Month: October 2020

Probability in Riddler Express from FiveThirtyEight: basketball’s hot hand

From Drew Mathieson comes an exploration of basketball’s historied hot hand:

This season, on the way to winning her fourth WNBA championship in her 17-year career, Sue Bird made approximately 50 percent of her field goal attempts. Suppose she and Seattle Storm teammate Breanna Stewart are interested in testing whether Bird has a “hot hand” — that is, if her chances of making a basket depend on whether or not her previous shot went in. Bird happens to know that her chances of making any given shot is always 50 percent, independent of her shooting history, but she agrees to perform an experiment.

In each trial of the experiment, Bird will take three shots, while Stewart will record which shots Bird made or missed. Stewart will then look at all the trials that had at least one shot that was preceded by a made shot. She will randomly pick one of these trials and then randomly pick a shot that was preceded by a made shot. (If there was only one such shot to pick from, she will choose that shot.)

What is the probability that Bird made the shot that Stewart picked?

Probability in Riddler Express from FiveThirtyEight: elect a mayor

Inspired, Vikrant Kulkarni has an electoral enigma for you:

On Nov. 3, the residents of Riddler City will elect a mayor from among three candidates. The winner will be the candidate who receives an outright majority (i.e., more than 50 percent of the vote). But if no one achieves this outright majority, there will be a runoff election among the top two candidates.

If the voting shares of each candidate are uniformly distributed between 0 percent and 100 percent (subject to the constraint that they add up to 100 percent, of course), then what is the probability of a runoff?

Extra credit: Suppose there are N candidates instead of three. What is the probability of a runoff?

Probability in Riddler Express from FiveThirtyEight

 

Can You Parallel Park Your Car? Riddler Express from 538

Every weekend, I drive into town for contactless curbside pickup at a local restaurant. Across the street from the restaurant are six parking spots, lined up in a row. While I can parallel park, it’s definitely not my preference. No parallel parking is required when the rearmost of the six spots is available or when there are two consecutive open spots. If there is a random arrangement of cars currently occupying four of the six spots, what’s the probability that I will have to parallel park?