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Preface

This textbook has been created as a part of the University of Connecticut Open and Afford-
able Initiative, which in turn was a response to the Connecticut State Legislature Special Act
No. 15-18 (House Bill 6117), An Act Concerning the Use of Digital Open-Source Textbooks
in Higher Education. At the University of Connecticut this initiative was strongly supported
by the UConn Bookstore and the University of Connecticut Libraries. Generous external
support was provided by the Davis Educational Foundation.

Even before this initiative, our department had a number of freely available and internal
resources for Math 3160, our basic probability course. This included lecture notes prepared
by Richard Bass, the Board of Trustees Distinguished Professor of Mathematics. Therefore,
it was natural to extend the lecture notes into a complete textbook for the course. Two
aspects of the courses were taken into account. On the one hand, the course is taken by
many students who are interested in the financial and actuarial careers. On the other hand,
this course has multivariable calculus as a prerequisite, which is not common for most of
the undergraduate probability courses taught at other universities. The 2018 edition of the
textbook has 4 parts divided into 15 chapters. The first 3 parts consist of required material
for Math 3160, and the 4th part contains optional material for this course.

Our textbook has been used in classrooms during 3 semesters at UConn, and received over-
whelmingly positive feedback from students. However, we are still working on improving the
text, and will be grateful for comments and suggestions.

May 2018.
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Part 1

Discrete Random Variables





CHAPTER 1

Combinatorics

1.1. Introduction

The first basic principle is to multiply.

Example 1.1: Suppose we have 4 shirts of 4 different colors and 3 pants of different colors.
How many possibilities are there? For each shirt there are 3 possibilities, so altogether there
are 4× 3 = 12 possibilities.

Example 1.2: How many license plates of 3 letters followed by 3 numbers are possible?

Answer. (26)3(10)3, because there are 26 possibilities for the first place, 26 for the second,
26 for the third, 10 for the fourth, 10 for the fifth, and 10 for the sixth. We multiply.

How many ways can one arrange a, b, c? One can have

abc, acb, bac, bca, cab, cba.

There are 3 possibilities for the first position. Once we have chosen the first position, there
are 2 possibilities for the second position, and once we have chosen the first two possibilities,
there is only 1 choice left for the third. So there are 3 × 2 × 1 = 6 = 3! arrangements. In
general, if there are n letters, there are n! possibilities.

Example 1.3: What is the number of possible batting orders with 9 players?

Answer. 9! = 362880

Example 1.4: How many ways can one arrange 4 math books, 3 chemistry books, 2 physics
books, and 1 biology book on a bookshelf so that all the math books are together, all the
chemistry books are together, and all the physics books are together.

Answer. 4! · (4! · 3! · 2! · 1!) = 6912. We can arrange the math books in 4! ways, the chemistry
books in 3! ways, the physics books in 2! ways, and the biology book in 1! = 1 way. But
we also have to decide which set of books go on the left, which next, and so on. That is
the same as the number of ways of arranging the letters M,C, P,B, and there are 4! ways
of doing that.

Example 1.5: How many ways can one arrange the letters a, a, b, c? Let us label them
A, a, b, c. There are 4!, or 24, ways to arrange these letters. But we have repeats: we could

© Copyright 2013 Richard F. Bass
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4 1. COMBINATORICS

have Aa or aA. So we have a repeat for each possibility, and so the answer should be
4!/2! = 12.

If there were 3 a’s, 4 b’s, and 2 c’s, we would have
9!

3!4!2!
= 1260.

What we just did was called the number of permutations.

Now let us look at what are known as combinations. How many ways can we choose 3
letters out of 5? If the letters are a, b, c, d, e and order matters, then there would be 5 for the
first position, 4 for the second, and 3 for the third, for a total of 5× 4× 3. But suppose the
letters selected were a, b, c. If order doesn’t matter, we will have the letters a, b, c 6 times,
because there are 3! ways of arranging 3 letters. The same is true for any choice of three
letters. So we should have 5× 4× 3/3!. We can rewrite this as

5 · 4 · 3
3!

=
5!

3!2!
= 10

This is often written
(

5
3

)
, read “5 choose 3.” Sometimes this is written C5,3 or 5C3. More

generally, (
n
k

)
=

n!

k!(n− k)!
.

Example 1.6: How many ways can one choose a committee of 3 out of 10 people?

Answer.
(

10
3

)
= 120.

Example 1.7: Suppose there are 8 men and 8 women. How many ways can we choose a
committee that has 2 men and 2 women?

Answer. We can choose 2 men in
(

8
2

)
ways and 2 women in

(
8
2

)
ways. The number of

committees is then the product:
(

8
2

)
·
(

8
2

)
= 784.

Example 1.8: Suppose one has 9 people and one wants to divide them into one committee

of 3, one of 4, and a last of 2. There are
(

9
3

)
ways of choosing the first committee. Once that

is done, there are 6 people left and there are
(

6
4

)
ways of choosing the second committee.

Once that is done, the remainder must go in the third committee. So the answer is
9!

3!6!

6!

4!2!
=

9!

3!4!2!
.
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In general, to divide n objects into one group of n1, one group of n2, . . ., and a kth group of
nk, where n = n1 + · · ·+ nk, the answer is

n!

n1!n2! · · ·nk!
.

These are known as multinomial coefficients.

Another example: suppose we have 4 Americans and 6 Canadians. (a) How many ways can
we arrange them in a line? (b) How many ways if all the Americans have to stand together?
(c) How many ways if not all the Americans are together? (d) Suppose you want to choose
a committee of 3, which will be all Americans or all Canadians. How many ways can this be
done? (e) How many ways for a committee of 3 that is not all Americans or all Canadians?

Answer. (a) This is just 10! (b) Consider the Americans as a group and each Canadian as
a group; this gives 7 groups, which can be arranged in 7! ways. Once we have these seven
groups arranged, we can arrange the Americans within their group in 4! ways, so we get
4!7! (c) This is the answer to (a) minus the answer to (b): 10! − 4!7! (d) We can choose a

committee of 3 Americans in
(

4
3

)
ways and a committee of 3 Canadians in

(
6
3

)
ways, so

the answer is
(

4
3

)
+

(
6
3

)
. (e) We can choose a committee of 3 out of 10 in

(
10
3

)
ways, so

the answer is
(

10
3

)
−
(

4
3

)
−
(

6
3

)
.

Finally, we consider three interrelated examples. First, suppose one has 8 o’s and 2 |’s. How
many ways can one arrange these symbols in order? There are 10 spots, and we want to

select 8 of them in which we place the o’s. So we have
(

10
8

)
.

Next, suppose one has 8 indistinguishable balls. How many ways can one put them in 3
boxes? Let us make sequences of o’s and |’s; any such sequence that has | at each side, 2
other |’s, and 8 o’s represents a way of arranging balls into boxes. For example, if one has

| o o | o o o | o o o |,
this would represent 2 balls in the first box, 3 in the second, and 3 in the third. Altogether
there are 8 + 4 symbols, the first is a | as is the last. so there are 10 symbols that can be
either | or o. Also, 8 of them must be o. How many ways out of 10 spaces can one pick 8 of

them into which to put a o? We just did that: the answer is
(

10
8

)
.

Now, to finish, suppose we have $8,000 to invest in 3 mutual funds. Each mutual fund
required you to make investments in increments of $1,000. How many ways can we do this?
This is the same as putting 8 indistinguishable balls in 3 boxes, and we know the answer is(

10
8

)
.
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1.2. Further examples and explanations

1.2.1. Counting Principle revisited. We need a way to help us count faster rather
than counting by hand one by one. We define the following counting principle.

Fact. (Basic Counting Principle) Suppose 2 experiments are to be performed. If one exper-
iment can result in m possibilities, and the second experiment can result in n possibilities,
then together there are mn possibilities.

One can visualize the Basic Counting Principle by using the Box Method. In the Box
Method, each box represents the number of possibilities in that experiment.

Experiment1 Experiment2 = Experiment 1 and 2 together
n m = nm

Example 1.9: There are 20 teachers and 100 students in a school. How many ways can
we pick a teacher and student of the year?

Answer. Use the box method: 20× 100 = 2000.

Fact. The counting principle can be generalized to any number of experiments: for k exper-
iment we have n1 · · ·nk possibilities.

Example 1.10: A college planning committee consists of 3 freshmen, 4 sophomores, 5
juniors, and 2 seniors. A subcommittee of 4 consists 1 person from each class. How many
choices are possible?

Answer. Box Method gives 3× 4× 5× 2 = 120.

Example 1.11: Recall that for 6−place license plates, with the first three places occupied
by letters and the last three by numbers, we have 26 · 26 · 26 · 10 · 10 · 10 choices. Question:
What if no repetition is allowed?

Answer. the Box Method again: 26 · 25 · 24 · 10 · 9 · 8

Example 1.12: How many functions defined on k points are possible if each functional
value is either 0 or 1.

Answer. Box method on the 1, . . . , k points gives us 2k possible functions. This is the
generalized counting principle with n1 = n2 = ... = nk = 2.

© Copyright 2017 Phanuel Mariano



1.2. FURTHER EXAMPLES AND EXPLANATIONS 7

1.2.2. Permutations. Recall how many different ordered arrangements of the letters
a, b, c are possible:

• abc, acb, bac, bca, cab, cba, and each arrangement is a permutation.
• We also can use the Box Method to figure this out: 3 · 2 · 1 = 6.

Fact. With n objects. There are

n (n− 1) · · · 3 · 2 · 1 = n!

different permutations of the n objects.

(?) Note that order matters when it comes to permutations.

Example 1.13: What is the number of possible batting order with 9 players?

Answer. 9! by the Box Method or permutations.

Example 1.14: How many ways can one arrange 5 math books, 6 chemistry books, 7
physics books, and 8 biology books on a bookshelf so that all the math books are together,
all the chemistry books are together, and all the physics books are together.

Answer. We can arrange the math books in 5! ways, the chemistry in 6! ways, the physics
in 7! ways, and biology books in 8! ways. We also have to decide which set of books go on
the left, which next, and so on. That is the same as the number of ways of arranging the
letters M,C,P,B, and there are 4! ways of doing that. So the total is 4! · (5! · 6! · 7! · 8!) ways.

Now consider a couple of examples with Repetitions.

Example 1.15: How many ways can one arrange the letters a, a, b, b, c, c? Let us first
re-label them A, a,B, b, C, c. Then there are 6! = 720, ways to arrange these letters. But we
have repeats: we could have Aa or aA. So we have a repeat for each possibility ans (so we
have to divide!).

Answer. 6!/(2!)3 = 60.

Example 1.16: How many different letter arrangements can be formed from the word
PEPPER?

Answer. There 3 P ’s 2 E’s and one R. So 6!
3!2!1!

= 30.

Example 1.17: Suppose there are 4 Czech tennis players, 4 U.S. players, and 3 Russian
players, in how many ways could they be arranged, if we don’t distinguish players from the
same country?

Answer. 11!
4!4!3!

.

Fact. There are
n!

n1! · · ·nr!
different permutations of n objects of which n1 are alike, n2 are alike, nr are alike.
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1.2.3. Combinations. We are often interested in selecting r objects from a total of n
objects and the order of these objects does not matter.

Fact. If r ≤ n, then (
n
r

)
=

n!

(n− r)!r!

called n choose r, represents the number of possible combinations of objects taken r at a
time from n objects.

(?) The order DOES NOT matter for combinations.

Recall in Permutations order did matter.

Example 1.18: How many ways can one choose a committee of 3 out of 10 people?

Answer.
(

10
3

)
= 10!

3!7!
= 10·9·8

3·2 = 10 · 3 · 4 = 120.

Example 1.19: Suppose there are 9 men and 8 women. How many ways can we choose a
committee that has 2 men and 3 women?

Answer. We can choose 2 men in
(

9
2

)
ways and 3 women in

(
8
3

)
ways. The number of

committees is then the product
(

9
2

)
·
(

8
3

)
.

Example 1.20: Suppose somebody has n friends, of whom k are be invited to a meeting.

Answer.

a How many choices exist if 2 of the friends will not attend together?
– Box it: [none] + [ one of them] [others]

–
(
n− 2
k

)
+

(
2
1

)
·
(
n− 2
k − 2

)
(recall that when we have OR, use +)

b How many choices exist if 2 of the friends will only attend together?
– Box it: [none] + [with both]

–
(
n− 2
k

)
+ 1 · 1 ·

(
n− 2
k − 2

)

The value of
(
n
r

)
are called binomials coefficients because of their prominence in the

binomial theorem.

Theorem. (The Binomial Theorem)

(x+ y)n =
n∑
k=0

(
n
k

)
xkyn−k.
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Proof. To see this, the left hand side is (x + y)(x + y) · · · (x + y). This will be the sum
of 2n terms, and each term will have n factors. How many terms have k x’s and n−k y’s?
This is the same as asking in a sequence of n positions, how many ways can one choose k of

them in which to put x’s? (Box it) The answer is
(
n
k

)
, so the coefficient of xkyn−k should

be
(
n
k

)
.

Example 1.21: Using Combinatorics: Let’s prove(
10
4

)
=

(
9
3

)
+

(
9
4

)
with no algebra:

Answer. The left hand side (LHS) represents the number of committees having 4 people out
of the 10. Let’s interpret the right hand side (RHS). Let’s say Tom Brady will be in one of
these committees and he’s special, so we want to know when he’ll be there or not. When he’s

there, then there are 1 ·
(

9
3

)
number of ways that contain Tom Brady while

(
9
4

)
is the

number of committees that do not contain Tom Brady and contain 4 out of the remaining
people. Adding it up gives us the number of committees having 4 people out of the 10.

Example 1.22: The more general equation is(
n
r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)

Example 1.23: Expand (x+ y)3.

Answer. (x+ y)3 = y3 + 3xy2 + 3x2y + x3.



10 1. COMBINATORICS

1.2.4. Multinomial Coefficients.

Example 1.24: Suppose one has 9 people and wants to divide them into one committee
of 3, one of 4, and a last of 2. How many different ways are there?

Answer. (Box it) There are
(

9
3

)
ways of choosing the first committee. Once that is done,

there are 6 people left and there are
(

6
4

)
ways of choosing the second committee. Once

that is done, the remainder must go in the third committee. So there is 1 one to choose that.
So the answer is

9!

3!6!

6!

4!2!
=

9!

3!4!2!
.

In general: if we are to divide n objects into a group of n1, a group of n2, . . . and a kth

group of nk, where n = n1 + · · · + nk, then the answer can be given in
n!

n1!n2! · · ·nk!
ways.

These are known as multinomial coefficients. We write them as(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nk!

Example 1.25: Suppose we are to assign 10 police officers: 6 patrols, 2 in station, 2 in

schools. Then there are
10!

6!2!2!
different assignments.

Example 1.26: There are 10 flags: 5 Blue one, 3 red one, and 2 yellow. These flags are
indistinguishable, except for their color. How may different ways can we order them on a
flag pole?

Answer. 10!
5!3!2!

.

Example 1.27: Suppose one has n indistinguishable balls. How many ways can one put
them in k boxes, assuming n > k?

Solution 1: Let us make sequences of o’s and |’s; any such sequence that has | at
each side, k − 1 other |’s, and n o’s represents a way of arranging balls into boxes.
For example, one may have

| oo | ooo | ooo |
if n = 8 and k = 3. How many different ways can we arrange this, if we have to
start with | and end with |? In between, we are only arranging n + k − 1 symbols,
of which only n are o’s. So the question is: how many ways out of n+ k− 1 spaces

can one pick n of them into which to put an o? Answer:
(
n+ k − 1

n

)
.

Solution 2: Look at spaces between that have a |. There are k − 1 spaces, and so

the answer is
(
n+ k − 1
k − 1

)
=

(
n+ k − 1

n

)
.



1.3. EXERCISES 11

1.3. Exercises

Exercise 1.1: Suppose a License plate must consist of 7 numbers or letter. How many
license plates are there if

(A) there can only be letters?
(B) the first three places are numbers and the last four are letters?
(C) the first three places are numbers and the last four are letters, but there can not be any

repetitions in the same license plate?

Exercise 1.2: A school of 50 students has awards for the top math, English, history and
science student in the school

(A) How many ways can these awards be given if each student can only win one award?
(B) How many ways can these awards be given if students can win multiple awards?

Exercise 1.3: A password can be made up of any 4 digit combination.

(A) How many different passwords are possible?
(B) How many are possible if all the digits are odd?
(C) How many can be made in which all digits are different or all digits are the same?

Exercise 1.4: There is a school class of 25 people made up of 11 guys and 14 girls.

(A) How many ways are there to make a committee of 5 people?
(B) How many ways are there to pick a committee of all girls?
(C) How many ways are there to pick a committee of 3 girls and 2 guys?

Exercise 1.5: If a student council contains 10 people, how many ways are there to elect a
president, a vice president, and a 3 person prom committee from the group of 10 students?

Exercise 1.6: Suppose you are organizing your textbooks on a book shelf. You have three
chemistry books, 5 math books, 2 history books and 3 English books.

(A) How many ways can you order the textbooks if you must have math books first, English
books second, chemistry third, and history fourth?

(B) How many ways can you order the books if each subject must be ordered together?

Exercise 1.7: If you buy a Powerball lottery ticket, you can choose 5 numbers between
1 and 59 (picked on white balls) and one number between 1 and 35 (picked on a red ball).
How many ways can you

(A) win the jackpot (guess all the numbers correctly)?
(B) match all the white balls but not the red ball?
(C) match exactly 3 white balls and the red ball?
(D) match at least 3 white balls and the red ball?
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Exercise 1.8: A couple wants to invite their friends to be in their wedding party. The
groom has 8 possible groomsmen and the bride has 11 possible bridesmaids. The wedding
party will consist of 5 groomsman and 5 bridesmaids.

(A) How many wedding party’s are possible?
(B) Suppose that two of the possible groomsmen are feuding and will only accept an invi-

tation if the other one is not going. How many wedding party’s are possible?
(C) Suppose that two of the possible bridesmaids are feuding and will only accept an invi-

tation if the other one is not going. How many wedding party’s are possible?
(D) Suppose that one possible groomsman and one possible bridesmaid refuse to serve to-

gether. How many wedding party’s are possible?

Exercise 1.9: There are 52 cards in a standard deck of playing cards. The poker hand is
consists of five cards. How many poker hands are there?

Exercise 1.10: There are 30 people in a communications class. Each student must inter-
view one another for a class project. How many total interviews will there be?

Exercise 1.11: Suppose a college basketball tournament consists of 64 teams playing head
to head in a knockout style tournament. There are 6 rounds, the round of 64, round of 32,
round of 16, round of 8, the final four teams, and the finals. Suppose you are filling out a
bracket, such as this, which specifies which teams will win each game in each round.

How many possible brackets can you make?

Exercise 1.12: We need to choose a group of 3 women and 3 men out of 5 women and 6
men. In how many ways can we do it if 2 of the men refuse to be chosen together?

Exercise 1.13: Find the coefficient in front of x4 in the expansion of (2x2 + 3y)4.

Exercise 1.14: In how many ways can you choose 2 or less (maybe none!) toppings for
your ice-cream sundae if 6 different toppings are available? (You can use combinations here,
but you do not have to.) Next, try to find a general formula to compute in how many ways
you can choose k or less toppings if n different toppings are available
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1.4. Selected solutions

Solution to Exercise 1.1(A): 267

Solution to Exercise 1.1(B): 103 · 264

Solution to Exercise 1.1(C): 10 · 9 · 8 · 26 · 25 · 24 · 23

Solution to Exercise 1.2(A): 50 · 49 · 48 · 47

Solution to Exercise 1.2(B): 504

Solution to Exercise 1.3(A): 104

Solution to Exercise 1.3(B): 54

Solution to Exercise 1.3(C): 10 · 9 · 8 · 7 + 10

Solution to Exercise 1.4(A):
(

25
5

)
Solution to Exercise 1.4(B):

(
14
5

)
Solution to Exercise 1.4(C):

(
14
3

)
·
(

11
2

)

Solution to Exercise 1.5: 10 · 9 ·
(

8
3

)
Solution to Exercise 1.6(A): 5!3!3!2!

Solution to Exercise 1.6(B): 4! (5!3!3!2!)

Solution to Exercise 1.7(A): 1

Solution to Exercise 1.7(B): 1 · 34

Solution to Exercise 1.7(C):
(

5
3

)
·
(

54
2

)
·
(

1
1

)
Solution to Exercise 1.7(D):

(
5
3

)
·
(

54
2

)
·
(

1
1

)
+

(
5
4

)
·
(

54
1

)
·
(

1
1

)
+ 1

Solution to Exercise 1.8(A):
(

8
5

)
·
(

11
5

)
Solution to Exercise 1.8(B):

(
6
5

)
·
(

11
5

)
+

(
2
1

)
·
(

6
4

)
·
(

11
5

)
Solution to Exercise 1.8(C):

(
8
5

)
·
(

9
5

)
+

(
8
5

)
·
(

2
1

)
·
(

9
4

)
Solution to Exercise 1.8(D):

(
7
5

)
·
(

10
5

)
+ 1 ·

(
7
4

)
·
(

10
5

)
+

(
7
5

)
· 1 ·

(
10
4

)
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Solution to Exercise 1.9:
(

52
5

)

Solution to Exercise 1.10:
(

30
2

)
Solution to Exercise 1.11: First notice that the 64 teams play 63 total games: 32 games
in the first round, 16 in the second round, 8 in the 3rd round, 4 in the regional finals, 2 in the
final four, and then the national championship game.That is, 32+16+8+4+2+1= 63. Since
there are 63 games to be played, and you have two choices at each stage in your bracket,
there are 263 different ways to fill out the bracket. That is

263 = 9, 223, 372, 036, 854, 775, 808.



CHAPTER 2

The probability set-up

2.1. Introduction and basic theory

We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes.
For example, if we roll two dice, the sample space would be all possible pairs made up of the
numbers one through six. An event is a subset of S.

Another example is to toss a coin 2 times, and let

S = {HH,HT, TH, TT};
or to let S be the possible orders in which 5 horses finish in a horse race; or S the possible
prices of some stock at closing time today; or S = [0,∞); the age at which someone dies; or
S the points in a circle, the possible places a dart can hit.

We use the following usual notation: A ∪B is the union of A and B and denotes the points
of S that are in A or B or both. A∩B is the intersection of A and B and is the set of points
that are in both A and B. ∅ denotes the empty set. A ⊂ B means that A is contained in B
and Ac is the complement of A, that is, the points in S that are not in A. We extend the
definition to have ∪ni=1Ai is the union of A1, · · · , An, and similarly ∩ni=1Ai.

An exercise is to show that

(∪ni=1Ai)
c = ∩ni=1A

c
i and (∩ni=1Ai)

c = ∪ni=1A
c
i .

These are called DeMorgan’s laws.

There are no restrictions on S. The collection of events, F , must be a σ-field, which means
that it satisfies the following:

(i) ∅, S is in F ;
(ii) if A is in F , then Ac is in F ;
(iii) if A1, A2, . . . are in F , then ∪∞i=1Ai and ∩∞i=1Ai are in F .

Typically we will take F to be all subsets of S, and so (i)-(iii) are automatically satisfied.
The only times we won’t have F be all subsets is for technical reasons or when we talk about
conditional expectation.

So now we have a space S, a σ-field F , and we need to talk about what a probability is.
There are three axioms:

(1) 0 ≤ P(E) ≤ 1 for all events E.
(2) P(S) = 1.
(3) If the Ei are pairwise disjoint, P(∪∞i=1Ei) =

∑∞
i=1 P(Ei).

© Copyright 2013 Richard F. Bass
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Pairwise disjoint means that Ei ∩ Ej = ∅ unless i = j.

Note that probabilities are probabilities of subsets of S, not of points of S. However it is
common to write P(x) for P({x}).
Intuitively, the probability of E should be the number of times E occurs in n times, taking
a limit as n tends to infinity. This is hard to use. It is better to start with these axioms,
and then to prove that the probability of E is the limit as we hoped.

There are some easy consequences of the axioms.

Proposition 2.1: (1) P(∅) = 0.
(2) If A1, . . . , An are pairwise disjoint, P(∪ni=1Ai) =

∑n
i=1 P(Ai).

(3) P(Ec) = 1− P(E).
(4) If E ⊂ F , then P(E) ≤ P(F ).
(5) P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).

Proof. For (1), let Ai = ∅ for each i. These are clearly disjoint, so P(∅) = P(∪∞i=1Ai) =∑∞
i=1 P(Ai) =

∑∞
i=1 P(∅). If P(∅) were positive, then the last term would be infinity, contra-

dicting the fact that probabilities are between 0 and 1. So the probability must be zero.

The second follows if we let An+1 = An+2 = · · · = ∅. We still have pairwise disjointness and
∪∞i=1Ai = ∪ni=1Ai, and

∑∞
i=1 P(Ai) =

∑n
i=1 P(Ai), using (1).

To prove (3), use S = E ∪ Ec. By (2), P(S) = P(E) + P(Ec). By axiom (2), P(S) = 1, so
(1) follows.

To prove (4), write F = E ∪ (F ∩ Ec), so P(F ) = P(E) + P(F ∩ Ec) ≥ P(E) by (2) and
axiom (1).

Similarly, to prove (5), we have P(E∪F ) = P(E)+P(Ec∩F ) and P(F ) = P(E∩F )+P(Ec∩F ).
Solving the second equation for P(Ec∩F ) and substituting in the first gives the desired result.

It is very common for a probability space to consist of finitely many points, all with equally
likely probabilities. For example, in tossing a fair coin, we have S = {H,T}, with P(H) =
P(T ) = 1

2
. Similarly, in rolling a fair die, the probability space consists of {1, 2, 3, 4, 5, 6},

each point having probability 1
6
.

Example 2.1: What is the probability that if we roll 2 dice, the sum is 7?

Answer. There are 36 possibilities, of which 6 have a sum of 7: (1, 6), (2, 5), (3, 4), (4, 3),
(5, 2), (6, 1). Since they are all equally likely, the probability is 6

36
= 1

6
.

Example 2.2: What is the probability that in a poker hand (5 cards out of 52) we get
exactly 4 of a kind?

Answer. The probability of 4 aces and 1 king is
(

4
4

)(
4
1

) / (
52
5

)
. The probability of 4

jacks and one 3 is the same. There are 13 ways to pick the rank that we have 4 of and then
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12 ways to pick the rank we have one of, so the answer is

13 · 12

(
4
4

)(
4
1

)
(

52
5

) .

Example 2.3: What is the probability that in a poker hand we get exactly 3 of a kind
(and the other two cards are of different ranks)?

Answer. The probability of 3 aces, 1 king and 1 queen is(
4
3

)(
4
1

)(
4
1

) / (
52
5

)
.

We have 13 choices for the rank we have 3 of and
(

12
2

)
choices for the other two ranks, so

the answer is

13

(
12
2

) (4
3

)(
4
1

)(
4
1

)
(

52
5

) .

Example 2.4: In a class of 30 people, what is the probability everyone has a different
birthday? (We assume each day is equally likely.)

Answer. Let the first person have a birthday on some day. The probability that the second
person has a different birthday will be 364

365
. The probability that the third person has a

different birthday from the first two people is 363
365

. So the answer is
364

365
· 363

365
· . . . · 336

365
.
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2.2. Further examples and applications

2.2.1. Events. An event A is a subset of S. In this case we use the notation A ⊂ S
meaning that A is a subset of S.

A picture of Venn diagrams from

http://www.onlinemathlearning.com/shading-venn-diagrams.html

Example 2.5: Roll two dice. Examples of events are

E = the two dice come up equal and even = {(2, 2) , (4, 4) , (6, 6)},
F = the sum of the two dice is 8 = {(2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2)},
E ∪ F = {(2, 2) , (2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2) , (6, 6)},
E ∩ F = {(4, 4)},
F c = all the 31 pairs that do not include {(2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2)}.

Example 2.6: Let S = [0,∞) be the space of all possible ages at which someone can die.
Possible events are

A = person dies before reaching 30 = [0, 30).
Ac = [30,∞) = person dies after turning = 30.
A ∪ Ac = S,
B = a person lives either less than 15 or more than 45 years = (15, 45].

2.2.2. Axioms of probability and their consequences.

Example 2.7: Coin tosses. Recall that if we toss a coin with each side being equally likely.
Then, S = {H,T} and

P ({H}) = P ({T}) =
1

2
.

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.

https://www.onlinemathlearning.com/venn-diagrams.html
http://www.onlinemathlearning.com/shading-venn-diagrams.html
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We may write P (H) = P (T ) = 1
2
. However, if the coin is biased, then still S = {H,T} but

each side can be assigned a different probability, for instance

P (H) =
2

3
,P (T ) =

1

3
.

Example 2.8: Rolling a fair die, the probability of getting an even number is

P ({even}) = P(2) + P (4) + P (6) =
1

2
.

An important consequence of the axioms that appeared in Proposition 2.1 is the so-called
inclusion-exclusion identity for two events A,B ⊆ S,

(2.2.1) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Let us see how we can combine the different consequences listed in Proposition 2.1 to solve
problems.

Example 2.9: UConn Basketball is playing Kentucky this year and from past experience
the following is known:

- Home game has .5 chance of winning
- Away game has .4 chance of winning.
- There is .3 chances that UConn wins both games.

What is the probability that UConn loses both games?

Let us write A1 =“win home game”, and A2 =“win away game”. Then, from past experience
we know that P (A1) = .5 , P (A2) = .4 and P (A1 ∩ A2) = .3. Notice that the event “loses
both games” can be expressed as Ac1∩Ac2. Thus we want to find out P (Ac1 ∩ Ac2). Simplifying
as much as possible (de Morgan’s laws!) and using consequence (3) from Proposition 2.1 we
have

P (Ac1 ∩ Ac2) = P ((A1 ∪ A2)c) = 1− P (A1 ∪ A2) .

The inclusion-exclusion identity (2.2.1) tells us

P (A1 ∪ A2) = .5 + .4− .3 = .6,

and hence P (Ac1 ∩ Ac2) = 1− .6 = .4.

The inclusion-exclusion identity is actually true for any finite number of events. To illustrate
this, we give next the formula in the case of three events.

Proposition 2.2 (Inclusion-exclusion identity): For any three events A,B,C ⊆ S,

P(A ∪B ∪ C) = P(A) + P(B) + P(C)(2.2.2)
− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C).

Exercise 2.1: Prove Proposition 2.2 by grouping A∪B ∪C as A∪ (B ∪C) and using the
formula (2.2.1) for two sets.
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2.2.3. Uniform discrete distribution. If in an experiment the probability space con-
sists of finitely many points, all with equally likely probabilities, the probability of any given
event has the following simple expression.

Proposition 2.3: The probability of an event E ⊆ S is

P (E) =
number of outcomes in E
number of outcomes in S

.

There are different ways how to count the number of outcomes. If nothing is explicitly said
we can always choose (and specify!) the way we regard our experiment.

Example 2.10: A committee of 5 people is to be selected from a group of 6 men and 9
women. What is probability that it consists of 3 men and 2 women?

In this case, in counting the ways to select a group with 3 men and 2 women the order is
irrelevant. We have

P(E) =
groups with 3 men and 2 women

groups of 5
=

(
6
3

)(
9
2

)
(

15
5

) =
240

1001
.

Many experiments can be modeled by considering a set of balls from which some will be
withdrawn. There are two basic ways of withdrawing, namely with or without replacement.

Example 2.11: Three balls are randomly withdrawn without replacement from a bowl
containing 6 white and 5 black balls. What is the probability that one ball is white and the
other two are black?

We may distinguish two cases:

a. The order in which the balls are drawn is important. Then,

P (E) =
WBB +BWB +BBW

11 · 10 · 9
=

6 · 5 · 4 + 5 · 6 · 4 + 5 · 4 · 6
990

=
120 + 120 + 120

990
=

4

11
.

b. The order is not important. In this case

P (E) =
(1 white) (2 black)(

11
3

) =

(
6
1

)(
5
2

)
(

11
3

) =
4

11
.
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2.3. Exercises

Exercise 2.2: Consider a box that contains 3 balls, 1 red, 1 green, and 1 yellow.

(A) Consider an experiment that consists of taking 1 ball from the box, placing it back in
the box, and then drawing a second ball from the box. List all possible outcomes.

(B) Repeat the experiment but now, after drawing the first ball, the second ball is drawn
from the box without replacing the first. List all possible outcomes.

Exercise 2.3: Suppose that A and B are pairwise disjoint events for which P(A) = 0.2
and P(B) = 0.4.

(A) What is the probability that B occurs but A does not?
(B) What is the probability that neither A nor B occurs?

Exercise 2.4: Forty percent of the students at a certain college are members neither of
an academic club nor a Greek organization. Fifty percent are members of an academic club
and thirty percent are members of a Greek organization. What is the probability that a
randomly chosen student is

(A) member of an academic club or a Greek organization?
(B) member of an academic club and of a Greek organization?

Exercise 2.5: In a city, 60% of the households subscribe to newspaper A, 50% to newspaper
B, 40% to newspaper C, 30% to A and B, 20% to B and C, and 10% to A and C. None
subscribe to all three.

(A) What percentage subscribe to exactly one newspaper?(Hint: Draw a Venn diagram)
(B) What percentage subscribe to at most one newspaper?

Exercise 2.6: There are 52 cards in a standard deck of playing cards. There are 4 suits :
hearts, spades, diamonds, and clubs (♥♠♦♣). Hearts and diamonds are red while spades
and clubs are black. In each suit there are 13 ranks : the numbers 2, 3 . . . , 10, the three face
cards, Jack, Queen, King, and the Ace. Note that Ace is nt a face card. A poker hand
consists of five cards. Find the probability of randomly drawing the following poker hands.

(A) All 5 cards are red?
(B) Exactly two 10’s and exactly three Aces?
(C) all 5 cards are either face cards or no-face cards?

Exercise 2.7: Find the probability of randomly drawing the following poker hands.

(A) A one pair, which consists of two cards of the same rank and three other distinct ranks.
(e.g. 22Q59)

(B) A two pair, which consists of two cards of the same rank, two cards of another rank,
and another card of yet another rank. (e.g.JJ779)

(C) A three of a kind, which consists of a three cards of the same rank, and two others of
distinct rank (e.g. 4449K).
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(D) A flush, which consists of all five cards of the same suit (e.g. HHHH, SSSS, DDDD, or
CCCC).

(E) A full house, which consists of a two pair and a three of a kind (e.g. 88844). (Hint:
Note that 88844 is a different hand than a 44488.)

Exercise 2.8: Suppose a standard deck of cards is modified with the additional rank of
Super King and the additional suit of Swords so now each card has one of 14 ranks and one
of 5 suits. What is the probability of

(A) selecting the Super King of Swords?
(B) getting a six card hand with exactly three pairs (two cards of one rank and two cards

of another rank and two cards of yet another rank, e.g. 7,7,2,2,J,J) ?
(C) getting a six card hand which consists of three cards of the same rank, two cards of

another rank, and another card of yet another rank. (e.g. 3,3,3,A,A,7)?

Exercise 2.9: A pair of fair dice is rolled. What is the probability that the first die lands
on a strictly higher value than the second die?

Exercise 2.10: In a seminar attended by 8 students, what is the probability that at least
two of them have birthday in the same month?

Exercise 2.11: Nine balls are randomly withdrawn without replacement from an urn that
contains 10 blue, 12 red, and 15 green balls. What is the probability that

(A) 2 blue, 5 red, and 2 green balls are withdrawn?
(B) at least 2 blue balls are withdrawn?

Exercise 2.12: Suppose 4 valedictorians from different high schools are accepted to the
8 Ivy League universities. What is the probability that each of them chooses to go to a
different Ivy League university?

Exercise 2.13: Two dice are thrown. Let E be the event that the sum of the dice is even,
and F be the event that at least one of the dice lands on 2. Describe EF and E

⋃
F .

Exercise 2.14: If there are 8 people in a room, what is the probability that no two of
them celebrate their birthday in the same month?

Exercise 2.15: Box I contains 3 red and 2 black balls. Box II contains 2 red and 8 black
balls. A coin is tossed. If H, then a ball from box I is chosen; if T, then from from box II.

(1) What is the probability that a red ball is chosen?
(2) Suppose now the person tossing the coin does not reveal if it has turned H or T. If

a red ball was chosen, what is the probability that it was box I (that is, H)?
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2.4. Selected solutions

Solution to Exercise 2.2(A): Since every marble can be drawn first and every marble can
be drawn second, there are 32 = 9 possibilities: RR, RG, RB, GR, GG, GB, BR, BG, and
BB (we let the first letter of the color of the drawn marble represent the draw).

Solution to Exercise 2.2(B): In this case, the color of the second marble cannot match
the color of the rest, so there are 6 possibilities: RG, RB, GR, GB, BR, and BG.

Solution to Exercise 2.3(A): Since A ∩B = ∅, Ac ⊆ B hence P(B ∩ Ac) = P(B) = 0.4.

Solution to Exercise 2.3(B): By de Morgan’s laws and property (3) of Proposition 2.1,

P(Ac ∩Bc) = P((A ∪B)c) = 1− P(A ∪B) = 1− (P(A) + P(B)) = 0.4.

Solution to Exercise 2.4(A): P (A ∪B) = 1− .4 = .6

Solution to Exercise 2.4(B): Notice that

.6 = P (A ∪B) = P (A) + P (B)− P (A ∩B) = .5 + .3− P (A ∩B)

Thus, P (A ∩B) = .2.

Solution to Exercise 2.5(A): We use these percentages to produce the Venn diagram
below:

This tells us that 30% of households subscribe to exactly one paper.

Solution to Exercise 2.5(B): The Venn diagram tells us that 100%−(10%+20%+30%) =
40% of the households subscribe to at most one paper.

Solution to Exercise 2.6(A):

 26
5


 52

5
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Solution to Exercise 2.6(B):

 4
2

·
 4

3


 52

5



Solution to Exercise 2.6(C):

 12
5


 52

5

 +

 40
5


 52

5



Solution to Exercise 2.7(A): 13

(
4
2

)(
12
3

)(
4
1

)(
4
1

)(
4
1

)
�
(

52
5

)
Solution to Exercise 2.7(B):

(
13
2

)(
4
2

)(
4
2

)(
44
1

)
�
(

52
5

)
Solution to Exercise 2.7(C): 13

(
4
3

)(
12
2

)(
4
1

)(
4
1

)
�
(

52
5

)
Solution to Exercise 2.7(D): 4

(
13
5

)
�
(

52
5

)
Solution to Exercise 2.7(E): 13 · 12

(
4
3

)(
4
2

)
�
(

52
5

)
Solution to Exercise 2.8(A): 1

70

Solution to Exercise 2.8(B):
(

14
3

)(
5
2

)(
5
2

)(
5
2

)
�
(

70
6

)
Solution to Exercise 2.8(C): 14

(
5
3

)
13

(
5
2

)
12

(
5
1

)
�
(

70
6

)
Solution to Exercise 2.9: Simple inspection we can see that the only possibilities

(6, 1) · · · (6, 5) 5 possibilities
(5, 1) · · · (5, 4) 4 possibilities
(4, 1) · · · (4, 3) 3 possibilities
(3, 1) · · · (3, 2) 2 possibilities
(2, 1) · · · (2, 1) 1 possibility

= 15 total

Thus the probability is 15
36
.

Solution to Exercise 2.10: 1− 12·11·10·9·8·7·6·5
128

Solution to Exercise 2.11(A):

 10
2

 12
5

 15
2


 37

9
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Solution to Exercise 2.11(B): 1−

 27
9


 37

9

 −
 10

1

 27
8


 37

9


Solution to Exercise 2.12: 8·7·6·5

84





CHAPTER 3

Independence

3.1. Introduction

Definition 3.1: We say that E and F are independent events if

P (E ∩ F ) = P (E)P (F )

Example 3.1: Suppose you flip two coins. The outcome of heads on the second is inde-
pendent of the outcome of tails on the first. To be more precise, if A is tails for the first
coin and B is heads for the second, and we assume we have fair coins (although this is not
necessary), we have P(A ∩B) = 1

4
= 1

2
· 1

2
= P(A)P(B).

Example 3.2: Suppose you draw a card from an ordinary deck. Let E be you drew an
ace, F be that you drew a spade. Here 1

52
= P(E ∩ F ) = 1

13
· 1

4
= P(E) ∩ P(F ).

Proposition 3.2: If E and F are independent, then E and F c are independent.

Proof.

P(E ∩ F c) = P(E)− P(E ∩ F ) = P(E)− P(E)P(F )

= P(E)[1− P(F )] = P(E)P(F c).

We say E, F , and G are independent if E and F are independent, E and G are independent,
F and G are independent, and P(E ∩ F ∩G) = P(E)P(F )P(G).

Example 3.3: Suppose you roll two dice, E is that the sum is 7, F that the first is a 4,
and G that the second is a 3. E and F are independent, as are E and G and F and G, but
E,F and G are not.

The concept of independence can be generalized to any number of events as follows.

Definition 3.3: Let A1, . . . , An ⊂ S be a collection of n events. We say that they are
independent if for all possible subcollections i1, . . . , ir ∈ {1, . . . , n}, 1 ≤ r ≤ n, it holds that

P
( r⋂
k=1

Aik

)
=

r∏
k=1

P(Aik).

27
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Example 3.4: What is the probability that exactly 3 threes will show if you roll 10 dice?

Answer. The probability that the 1st, 2nd, and 4th dice will show a three and the other 7
will not is 1

6

3 5
6

7. Independence is used here: the probability is 1
6

1
6

5
6

1
6

5
6
· · · 5

6
. The probability

that the 4th, 5th, and 6th dice will show a three and the other 7 will not is the same thing.
So to answer our original question, we take 1

6

3 5
6

7 and multiply it by the number of ways of

choosing 3 dice out of 10 to be the ones showing threes. There are
(

10
3

)
ways of doing that.

This is a particular example of what are known as Bernoulli trials or the binomial distribu-
tion. Suppose you have n independent trials, where the probability of a success is p. Then
the probability there are k successes is the number of ways of putting k objects in n slots

(which is
(
n
k

)
) times the probability that there will be k successes and n − k failures in

exactly a given order. So the probability is
(
n
k

)
pk(1− p)n−k.

Proposition 3.4: If an experiment with probability of success p that is repeated n times
independently, the probability of obtaining k successes for any 0 ≤ k ≤ n is given by

P(k successes in n trials) =

(
n

k

)
pk (1− p)n−k .

A problem that comes up in actuarial science frequently is gambler’s ruin.

Example 3.5: Suppose you toss a fair coin repeatedly and independently. If it comes up
heads, you win a dollar, and if it comes up tails, you lose a dollar. Suppose you start with
$50. What’s the probability you will get to $200 before you go broke?

Answer. It is easier to solve a slightly harder problem. Let y(x) be the probability you get to
200 before 0 if you start with x dollars. Clearly y(0) = 0 and y(200) = 1. If you start with
x dollars, then with probability 1

2
you get a heads and will then have x + 1 dollars. With

probability 1
2
you get a tails and will then have x− 1 dollars. So we have

y(x) = 1
2
y(x+ 1) + 1

2
y(x− 1).

Multiplying by 2, and subtracting y(x) + y(x− 1) from each side, we have

y(x+ 1)− y(x) = y(x)− y(x− 1).

This says succeeding slopes of the graph of y(x) are constant (remember that x must be an
integer). In other words, y(x) must be a line. Since y(0) = 0 and y(200) = 1, we have

y(x) = x/200,

and therefore y(50) = 1/4.

Example 3.6: Suppose we are in the same situation, but you are allowed to go arbitrarily
far in debt. Let y(x) be the probability you ever get to $200. What is a formula for y(x)?
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Answer. Just as above, we have the equation y(x) = 1
2
y(x+ 1) + 1

2
y(x−1). This implies y(x)

is linear, and as above y(200) = 1. Now the slope of y cannot be negative, or else we would
have y > 1 for some x and that is not possible. Neither can the slope be positive, or else we
would have y < 0, and again this is not possible, because probabilities must be between 0
and 1. Therefore the slope must be 0, or y(x) is constant, or

y(x) = 1 for all x.
In other words, one is certain to get to $200 eventually (provided, of course, that one is
allowed to go into debt). There is nothing special about the figure 300. Another way of
seeing this is to compute as above the probability of getting to 200 before L and then letting
L→ −∞.
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3.2. Further examples and explanations

3.2.1. Independent Events.

Example 3.7: A card is drawn from an ordinary deck of cards (52 cards). Consider the
events

F = “a face is drawn”, R = “a red color is drawn” .
These are independent events because, for one card, being a face does not affect it being red:
there are 12 faces, 26 red cards, and 6 cards that are red and faces. Thus,

P (F )P (R) =
12

52
· 26

52
=

3

26
,

P (F ∩R) =
6

52
=

3

26
.

Example 3.8: Suppose that two unfair coins are flipped: the first coin has the heads
probability 0.5001 and the second has heads probability 0.5002. The events

AT = “the first coin lands tails” , BT = “the second coin lands heads”

are independent. Why? The sample space S = {HH, HT, TH, TT} has 4 elements, all of
them of different probabilities, given as products. The events correspond to AT = {TH,TT}
and BH = {HH,TH} respectively, and the computation of the probabilities is:

P (AT ∩BH) = .4999 · .5002 = P (AT )P (Bh) .

Example 3.9: Two dice are simultaneously rolled. Consider the events

A1 = “the sum is 9” , A2 = “the first die lands even” , A3 = “the second die lands a 3”.

Are A1, A2 and A3 independent?

Answer. Notice that, on the one hand, P (A1 ∩ A2 ∩ A3) =
1

36
. On the other hand,

P (A1)P (A2)P (A3) =
4

36

1

2

1

6
=

1

36 · 3
6= 1

36
,

so they are not independent.

Example 3.10: An urn contains 10 balls, 4 red and 6 blue. A second urn contains 16 red
balls and an unknown number of blue balls. A single ball is drawn from each urn and the
probability that both balls are the same color is 0.44. How many blue balls are there in the
second urn?

Answer. Define the events

Ri = “a red ball is drawn from urn i ”, Bi = “a blue ball is drawn from urn i ”,

and let x denote the (unknown) number of blue balls in urn 2, so that the second urn has
16 + x balls in total. Using the fact that the events R1 ∩ R2 and B1 ∩ B2 are independent

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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(check this!), we have

0.44 = P
(

(R1 ∩R2)
⋃

(B1 ∩B2)
)

= P (R1 ∩R2) + P (B1 ∩B2)

= P (R1)P (R2) + P (B1)P (B2)

=
4

10

16

x+ 16
+

6

10

x

x+ 16
.

Solving this equation for x we get x = 4.

3.2.2. Bernoulli trials. Recall that successive independent repetitions of an experi-
ment that results in a success with some probability p and a failure with probability 1 − p
are called Bernoulli trials. Sometimes we can view an experiment as the successive repeti-
tion of a “simpler” one. For instance, rolling 10 dice can be seen as rolling one single die ten
times, each time independently of the other.

Example 3.11: Suppose that we roll 10 dice. What is the probability that at most 4 of
them land a two?

Answer.We can regard this experiment as consequently rolling one single die. One possibility
is that the first, second, third, and tenth trial land a two, while the rest land something else.
Since each trial is independent, the probability of this event will be

1

6
· 1

6
· 1

6
· 5

6
· 5

6
· 5

6
· 5

6
· 5

6
· 5

6
· 1

6
=

(
1

6

)4

·
(

5

6

)6

.

Note that the probability that the 10th, 9th, 8th, and 7th dice land a two and the other 6
do not is the same as the previous one. To answer our original question, we thus need to
consider the number of ways of choosing 0, 1, 2, 3 or 4 trials out of 10 to be the ones showing
a two. This means,

P(exactly 0 dice land a two) =

(
10

0

)
·
(

1

6

)0

·
(

5

6

)10

=

(
5

6

)10

.

P(exactly 1 dice lands a two) =

(
10

1

)
·
(

1

6

)
·
(

5

6

)9

.

P(exactly 2 dice land a two) =

(
10

2

)
·
(

1

6

)2

·
(

5

6

)8

.

P(exactly 3 dice land a two) =

(
10

3

)
·
(

1

6

)3

·
(

5

6

)7

.

P(exactly 4 dice land a two) =

(
10

4

)
·
(

1

6

)4

·
(

5

6

)6

.

The answer to the question is the sum of these five numbers.
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3.3. Exercises

Exercise 3.1: Let A and B be two independent events such that P (A ∪B) = 0.64 and
P (A) = 0.4. What is P(B)?

Exercise 3.2: In a class, there are 4 male math majors, 6 female math majors, and 6 male
actuarial science majors. How many actuarial science females must be present in the class
if sex and major are independent when choosing a student selected at random?

Exercise 3.3: Following Proposition 3.2, prove that E and F are independent if and only
if E and F c are independent.

Exercise 3.4: Prove the following statements about Example 3.3:

(a) E and F are independent,
(b) E and G are independent,
(c) F and G are independent,
(d) E,F and G are not independent.

Exercise 3.5: Two dice are simultaneously rolled. For each pair of events defined below,
compute if they are independent or not.

(a) A1 = {the sum is 7}, B1 = {the first die lands a 3}.
(b) A2 = {the sum is 9}, B2 = {the second die lands a 3}.
(c) A3 = {the sum is 9}, B3 = {the first die lands even}.
(d) A4 = {the sum is 9}, B4 = {the first die is less than the second}.
(e) A5 = {two dice are equal}, B5 = {the sum is 8}.
(f) A6 = {two dice are equal}, B6 = {the first die lands even}.
(g) A7 = {two dice are not equal}, B7 = {the first die is less than the second}.

Exercise 3.6: Are the events A1, B1 and B3 from Exercise 3.5 independent?

Exercise 3.7: Suppose you toss a fair coin repeatedly and independently. If it comes up
heads, you win a dollar, and if it comes up tails, you lose a dollar. Suppose you start with
$20. What is the probability you will get to $150 before you go broke? (See Example 3.5 for
a solution).

Exercise 3.8: A hockey team has 0.45 chances of losing a game. Assuming that each
game is independent from the other, what is the probability that the team loses 3 of the
next upcoming 5 games?

Exercise 3.9: You make successive independent flips of a coin that lands on heads with
probability p. What is the probability that the 3rd head appears on the 7th flip? (Express
your answers in terms of p; do not assume p = 1/2.)
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Exercise 3.10: Suppose you toss a fair coin repeatedly and independently. If it comes up
heads, you win a dollar, and if it comes up tails, you lose a dollar. Suppose you start with
$M . What is the probability you will get up to $N before you go broke? Give the answer
in terms of M and N , assuming 0 < M < N .

Exercise 3.11: Suppose that we roll n dice. What is the probability that at most k of
them land a two?
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3.4. Selected solutions

Solution to Exercise 3.1: Using independence we have P (A ∪B) = P(A) +P(B)−P(A∩
B) = P(A) + P(B)− P(A)P (B) and substituting we have

.64 = .4 + P (B)− .4P (B) .

Solving for P (B) we have P (B) = .4.

Solution to Exercise 3.2: Let x denote the number of actuarial sciences females. Then

P (male ∩math) =
4

16 + x
,

P (male) =
10

16 + x

P (math) =
10

16 + x
.

Then using independence P (male ∩math) = P (male)P (math) so that
4

16 + x
=

102

(16 + x)2 =⇒ 4 =
100

16 + x

and solving for x we have x = 9.

Solution to Exercise 3.3: Proposition 3.2 tells us that if E and F are independent, then
E and F c are independent. Let us now assume that E and F c are independent. We can
apply Proposition 3.2 and say that E and (F c)c are independent. Since (F c)c = F (draw a
Venn diagram), the assertion is proved.

Solution to Exercise 3.4: Rolling two dice, the sample space S has 36 elements, which are
all possible pairs of numbers between 1 and 6. All possible outcomes (pairs) are equally likely.
The event E has 6 possible outcomes: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). The events F
and G have also 6 possible outcomes each (check this!). Thus,

P(E) =
6

36
=

1

6
= P(F ) = P(G).

Thus, on the one hand,

P(E) · P(F ) = P(E) · P(G) = P(F ) · P(G) =
1

6
· 1

6
=

1

36
.

On the other hand, since E ∩ F = {(4, 3)} = E ∩G = F ∩G, we have

P(E ∩ F ) = P(E ∩G) = P(F ∩G) =
1

36

hence E,F,G are pairwise independent. However, E ∩ F ∩G = {(4, 3)}, so that

P(E ∩ F ∩G) =
1

36
6= 1

6
· 1

6
· 1

6
= P(E) · P(F ) · P(G),

and therefore E,F,G are not all together independent.

Solution to Exercise 3.8: These are Bernouilli trials. Each game is a trial and the
probability of loosing is p = 0.45. Using Proposition 3.4 with k = 3 and n = 5 we have

P(3 loses in 5 trials) =

(
5

3

)
0.453 · 0.552.
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Solution to Exercise 3.9: The 3rd head appearing on the 7th flip means that exactly two
heads during the previous 6 flips appear and the 7th is heads. Since the flips are independent
we have that the probability we search is

P(“ 2 heads in 6 trials AND heads in the 7th flip”) = P(“ 2 heads in 6 trials”)P(H).

Using Berouilli trials, P(“ 2 heads in 6 trials”) =
(

6
2

)
p2(1− p)4 and therefore the total prob-

ability is (
6

2

)
p2(1− p)4 · p =

(
6

2

)
p3(1− p)4.

Solution to Exercise 3.11:
k∑
r=0

(
n

r

)
·
(

1

6

)r
·
(

5

6

)n−r
.





CHAPTER 4

Conditional probability

4.1. Introduction

Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are
smokers. What is the probability that a person chosen at random will be a smoker? The
answer is 120/300. Now, let us ask, what is the probability that a person chosen at random
is a smoker given that the person is a women? One would expect the answer to be 20/100
and it is.

What we have computed is

number of women smokers
number of women

=
number of women smokers/300

number of women/300
,

which is the same as the probability that a person chosen at random is a woman and a
smoker divided by the probability that a person chosen at random is a woman.

With this in mind, we make the following definition.

Definition 4.1: If P(F ) > 0, we define

P(E | F ) =
P(E ∩ F )

P(F )
.

P(E | F ) is read “the probability of E given F .”

Note P(E ∩ F ) = P(E | F )P(F ).

Suppose you roll two dice. What is the probability the sum is 8? There are five ways this
can happen (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), so the probability is 5/36. Let us call this event
A. What is the probability that the sum is 8 given that the first die shows a 3? Let B be
the event that the first die shows a 3. Then P(A ∩ B) is the probability that the first die
shows a 3 and the sum is 8, or 1/36. P(B) = 1/6, so P(A | B) = 1/36

1/6
= 1/6.

Example 4.1: Suppose a box has 3 red marbles and 2 black ones. We select 2 marbles.
What is the probability that second marble is red given that the first one is red?

Answer. Let A be the event the second marble is red, and B the event that the first one is
red. P(B) = 3/5, while P(A ∩ B) is the probability both are red, or is the probability that

37
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we chose 2 red out of 3 and 0 black out of 2. The P(A ∩ B) =

(
3
2

)(
2
0

) / (
5
2

)
. Then

P(A | B) = 3/10
3/5

= 1/2.

Example 4.2: A family has 2 children. Given that one of the children is a boy, what is
the probability that the other child is also a boy?

Answer. Let B be the event that one child is a boy, and A the event that both children are
boys. The possibilities are bb, bg, gb, gg, each with probability 1/4. P(A ∩ B) = P(bb) = 1/4

and P(B) = P(bb, bg, gb) = 3/4. So the answer is 1/4
3/4

= 1/3.

Example 4.3: Suppose the test for HIV is 99% accurate in both directions and 0.3% of the
population is HIV positive. If someone tests positive, what is the probability they actually
are HIV positive?

Let D mean HIV positive, and T mean tests positive.

P(D | T ) =
P(D ∩ T )

P(T )
=

(.99)(.003)

(.99)(.003) + (.01)(.997)
≈ 23%.

A short reason why this surprising result holds is that the error in the test is much greater
than the percentage of people with HIV. A little longer answer is to suppose that we have
1000 people. On average, 3 of them will be HIV positive and 10 will test positive. So the
chances that someone has HIV given that the person tests positive is approximately 3/10.
The reason that it is not exactly .3 is that there is some chance someone who is positive will
test negative.

Suppose you know P(E | F ) and you want P(F | E).

Example 4.4: Suppose 36% of families own a dog, 30% of families own a cat, and 22%
of the families that have a dog also have a cat. A family is chosen at random and found to
have a cat. What is the probability they also own a dog?

Answer. Let D be the families that own a dog, and C the families that own a cat. We
are given P(D) = .36,P(C) = .30,P(C | D) = .22 We want to know P(D | C). We know
P(D | C) = P(D ∩ C)/P(C). To find the numerator, we use P(D ∩ C) = P(C | D)P(D) =
(.22)(.36) = .0792. So P(D | C) = .0792/.3 = .264 = 26.4%.

Example 4.5: Suppose 30% of the women in a class received an A on the test and 25%
of the men received an A. The class is 60% women. Given that a person chosen at random
received an A, what is the probability this person is a women?

Answer. Let A be the event of receiving an A, W be the event of being a woman, and M
the event of being a man. We are given P(A | W ) = .30,P(A | M) = .25,P(W ) = .60 and
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we want P(W | A). From the definition

P(W | A) =
P(W ∩ A)

P(A)
.

As in the previous example,
P(W ∩ A) = P(A | W )P(W ) = (.30)(.60) = .18.

To find P(A), we write
P(A) = P(W ∩ A) + P(M ∩ A).

Since the class is 40% men,
P(M ∩ A) = P(A |M)P(M) = (.25)(.40) = .10.

So
P(A) = P(W ∩ A) + P(M ∩ A) = .18 + .10 = .28.

Finally,

P(W | A) =
P(W ∩ A)

P(A)
=
.18

.28
.

Proposition 4.2: If P(E) > 0, then

P(F | E) =
P(E ∩ F )

P(E)
=

P(E | F )P(F )

P(E ∩ F ) + P(E ∩ F c)

=
P(E | F )P(F )

P(E | F )P(F ) + P(E | F c)P(F c)
.

This formula is known as Bayes’ rule.

Here is another example related to conditional probability, although this is not an example
of Bayes’ rule. This is known as the Monty Hall problem after the host of the TV show of
the 60’s called Let’s Make a Deal.

There are three doors, behind one a nice car, behind each of the other two a goat eating a
bale of straw. You choose a door. Then Monty Hall opens one of the other doors, which
shows a bale of straw. He gives you the opportunity of switching to the remaining door.
Should you do it?

Answer. Let’s suppose you choose door 1, since the same analysis applies whichever door
you chose. Strategy one is to stick with door 1. With probability 1/3 you chose the car.
Monty Hall shows you one of the other doors, but that doesn’t change your probability of
winning.

Strategy 2 is to change. Let’s say the car is behind door 1, which happens with probability
1/3. Monty Hall shows you one of the other doors, say door 2. There will be a goat, so you
switch to door 3, and lose. The same argument applies if he shows you door 3. Suppose
the car is behind door 2. He will show you door 3, since he doesn’t want to give away the
car. You switch to door 2 and win. This happens with probability 1/3. The same argument
applies if the car is behind door 3. So you win with probability 2/3 and lose with probability
1/3. Thus strategy 2 is much superior.
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4.2. Further examples and applications

4.2.1. Conditional Probabilities.

Example 4.6: Landon is 80% sure he forgot his textbook either at the Union or at Mon-
teith. He is 40% sure that the book is at the union, and 40% sure that it is at Monteith.
Given that Landon already went to Monteith and noticed his textbook is not there, what is
the probability that it is at the Union?

Answer. Calling U = “textbook at the Union”, and U = “textbook at Monteith”, notice that
U ⊆M c and hence U ∩M c = U . Thus,

P(U | M c) =
P (U ∩M c)

P (M c)
=

P (U)

1− P (M)
=

4/10

6/10
=

2

3
.

Example 4.7: Sarah and Bob draw 13 cards each from a standard deck of 52. Given that
Sarah has exactly two aces, what is the probability that Bob has exactly one ace?

Answer. Let A = “Sarah has two aces”, and let B = “Bob has exactly one ace”. In order to
compute P (B | A), we need to calculate P(A) and P(A∩B). On the one hand, Sarah could
have any of

(
52
13

)
possible hands. Of these hands,

(
4
2

)
·
(

48
11

)
will have exactly two aces so that

P(A) =

(
4
2

)
·
(

48
11

)(
52
13

) .

On the other hand, the number of ways in which Sarah can pick a hand and Bob another
(different) is

(
52
13

)
·
(

39
13

)
. The the number of ways in which A and B can simultaneously occur

is
(

4
2

)
·
(

48
11

)
·
(

2
1

)
·
(

37
12

)
and hence

P(A ∩B) =

(
4
2

)
·
(

48
11

)
·
(

2
1

)
·
(

37
12

)(
52
13

)
·
(

39
13

) .

Applying the definition of conditional probability we finally get

P (B | A) =
P (A ∩B)

P(A)
=

(
4
2

)
·
(

48
11

)
·
(

2
1

)
·
(

37
12

)/(
52
13

)
·
(

39
13

)
(

4
2

)
·
(

48
11

)/(
52
13

) =
2 ·
(

37
12

)(
39
13

)

Example 4.8: A total of 500 married couples are poled about their salaries with the
following results:

wife husband makes less than $25K husband makes more than $25K
Less than $25K 212 198
More than $25K 36 54

(a) Find the probability that a Husband earns less than $25K.
Answer.

P(Husband < $25K) =
212

500
+

36

500
=

248

500
= 0.496.

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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(b) Find the probability that a wife earns more than $25K, given that the husband earns
as that much as well.
Answer.

P (wife > $25K | Husband > $25K) =
54/500

(198 + 54)/500
=

54

252
= 0.214

(c) Find the probability that a wife earns more than $25K, given that the husband makes
less than $ 25K.
Answer.

P (wife > $25K | Husband < $25K) =
36/500

248/500
= 0.145.

From the definition of conditional probability we can deduce some useful relations.

Lemma 4.3: Let E,F ⊆ S be events with P(E),P(F ) > 0. Then,

(i) P(E ∩ F ) = P(E)P(F | E),
(ii) P(E) = P(E | F )P(F ) + P(E | F c)P(F c),
(iii) P(Ec | F ) = 1− P(E | F ).

Proof. (i) is a rewriting of P(F | E) = P(E∩F )
P(E)

. Let us prove (ii): We can write E as the
union of the pairwise disjoint sets E ∩ F and E ∩ F c. Using (i) we have

P (E) = P (E ∩ F ) + P (E ∩ F c)

= P (E | F )P (F ) + P (E | F c)P (F c) .

Finally, writing F = E in the previous equation and since P(E | Ec) = 0, we obtain (iii).

Example 4.9: Phan wants to take either a Biology course or a Chemistry course. His
adviser estimates that the probability of scoring an “A” in Biology is 4

5
while the probability

of scoring an “A” in Chemistry is 1
7
. If Phan decides randomly, by a coin toss, which course

to take, what is his probability of scoring an A in Chemistry?

Answer. Let B = “Phan takes Biology”, and C = “Phan takes Chemistry”, and A = “score
an A”. Then, since P(B) = P(C) = 1

2
we have

P (A ∩ C) = P (C)P (A | C) =
1

2
· 1

7
=

1

14
.

The relation P(E∩F ) = P(E)P(F | E) from Lemma 4.3(i) can be generalized to any number
of events in what is sometimes called the multiplication rule.

Proposition 4.4 (Multiplication rule): Let E1, E2, . . . , En ⊆ S be events. Then,

P (E1 ∩ E2 ∩ · · · ∩ En) = P (E1)P (E2 | E1)P (E3 | E1 ∩ E2) · · ·P (En | E1 ∩ E2 ∩ · · · ∩ En−1) .
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Example 4.10: An urn has 5 blue balls and 8 red balls. Each ball that is selected is
returned to the urn along with an additional ball of the same color. Suppose that 3 balls are
drawn in this way.

(a) What is the probability that the three balls are blue?
Answer. In this case, we have the sequence of events B1, B2, B3, where Bi = “the i-th
ball drawn is blue”. Applying the multiplication rule yields

P(B1 ∩B2 ∩B3) = P(B1)P(B2 | B1)P(B3 | B1 ∩B2) =
5

13

6

14

7

15
.

(b) What is the probability that only 1 ball is blue?
Answer. Writing Ri = “the i-th ball drawn is red”, we have

P (only 1 blue ball) = P(B1∩R2∩R3) + P(R1∩B2∩R3) + P(R1∩R2∩B3) = 3
5 · 8 · 9

13 · 14 · 15
.

Also the relation from Lemma 4.3(ii) can be generalized by partitioning the sample space S
into several pairwise disjoint sets F1, . . . , Fn (instead of simply F and F c).

Proposition 4.5 (Law of total probabilities): Let F1, . . . , Fn ⊆ S be mutually exclusive
and exhaustive events, i.e. S =

⋃n
i=1 Fi. Then, for any event E ⊆ S it holds that

P (E) =
n∑
i=1

P (E | Fi)P (Fi) .

4.2.2. Bayes’ rule. The following example describes the type of problems treated in
this section.

Example 4.11: An insurance company classifies insurers into “accident prone” or “not
accident prone”. Their current risk model works with the following probabilities.

- The probability that an “accident prone” insurer has an accident within a year is 0.4
- The probability that a “non-accident prone” insurer has an accident within a year is 0.2.

If 30% of the population is “accident prone”,

(a) What is the probability that a policy holder will have an accident within a year?
Answer. Write A1 = “policy holder will have an accident within a year” and let A =
“policy holder is accident prone”. Applying Lemma 4.3(ii) we have

P (A1) = P (A1 | A)P (A) + P (A1 | Ac) (1− P (A))

= 0.4 · 0.3 + 0.2(1− 0.3) = 0.26

(b) Suppose now that the policy holder has had accident within one year. What is the
probability that he or she is accident prone?
Answer. Use Bayes’ formula.

P (A | A1) =
P (A ∩ A1)

P (A1)
=
P (A)P (A1 | A)

0.26
=

0.3 · 0.4
0.26

=
6

14
.
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Using the Law of total probabilities from Proposition 4.5 one can generalize Bayes’s rule,
which appeared in Proposition 4.2.

Proposition 4.6 (Generalized Bayes’ rule): Let F1, . . . , Fn ⊆ S be mutually exclusive and
exhaustive events, i.e. S =

⋃n
i=1 Fi. Then, for any event E ⊆ S and any j = 1, . . . , n it

holds that

P (Fj | E) =
P (E | Fj)P (Fj)∑n
i=1 P (E | Fi)P (Fi)

Example 4.12: Suppose a factory has machines I, II, and III that produce “iSung” phones.
The factory’s record show that

- Machines I, II and III produce, respectively, 2%, 1%, and 3% defective iSungs.
- Out of the total production, machines I, II, and III produce, respectively, 35%, 25% and

40% of all iSungs.

An iSung is selected at random from the factory.

(a) What is probability that the iSung selected is defective?
Answer. By the law of total probabilities,

P (D) = P (I)P (D | I) + P (II)P (D | II) + P (III)P (D | III)

= 0.35 · 0.02 + 0.25 · 0.01 + 0.4 · 0.03 =
215

10, 000
.

(b) Given that the iSung is defective, what is the conditional probability that it was pro-
duced by machine III?
Answer. Applying Bayes’ rule,

P (III | D) =
P (III)P (D | III)

P (D)
=

0.4 · 0.03

215/10, 000
=

120

215
.

Example 4.13: In a multiple choice test, a student either knows the answer to a question
or she/he will randomly guess it. If each question has m possible answers and the student
knows the answer to a question with probability p, what is the probability that the student
actually knows the answer to a question, given that he/she answers correctly?

Answer. LetK = “student knows the answer” and C = “student answers correctly”. Applying
Bayes’ rule we have

P (K | C) =
P (C | K)P (K)

P (C | K)P (K) + P (C | Kc)P (Kc)
=

1 · p
1 · p+ 1

m
(1− p)

=
mp

1 + (m− 1)p
.
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4.3. Exercises

Exercise 4.1: Two dice are rolled. Consider the events A = {sum of two dice equals 3},
B = {sum of two dice equals 7 }, and C = {at least one of the dice shows a 1}.

(a) What is P (A | C)?
(b) What is P (B | C)?
(c) Are A and C independent? What about B and C?

Exercise 4.2: Suppose you roll two standard, fair, 6-sided dice. What is the probability
that the sum is at least 9 given that you rolled at least one 6?

Exercise 4.3: A box contains 1 green ball and 1 red ball and a second box contains 2 green
and 3 red balls. First a box is chosen and afterwards a ball withdrawn from the chosen box.
Both boxes are equally likely to be chosen. Given that a green ball has been withdrawn,
what is the probability that the first box was chosen?

Exercise 4.4: Suppose that 60% of UConn students will be at random exposed to the flu.
If you are exposed and did not get a flu shot, then the probability that you will get the flu
(after being exposed) is 80%. If you did get a flu shot, then the probability that you will get
the flu (after being exposed) is only 15%.

(a) What is the probability that a person who got a flu shot will get the flu?
(b) What is the probability that a person who did not get a flu shot will get the flu?

Exercise 4.5: Color blindness is a sex-linked condition, and 5% of men and 0.25% of
women are color blind. The population of the United States is 51% female. What is the
probability that a color-blind American is a man?

Exercise 4.6: Two factories supply light bulbs to the market. Bulbs from factory X work
for over 5000 hours in 99% of cases, whereas bulbs from factory Y work for over 5000 hours
in 95% of cases. It is known that factory X supplies 60% of the total bulbs available in the
market.

(a) What is the probability that a purchased bulb will work for longer than 5000 hours?
(b) Given that a light bulb works for more than 5000 hours, what is the probability that it

was supplied by factory Y ?
(c) Given that a light bulb work does not work for more than 5000 hours, what is the

probability that it was supplied by factory X?

Exercise 4.7: A factory production line is manufacturing bolts using three machines, A,
B and C. Of the total output, machine A is responsible for 25%, machine B for 35% and
machine C for the rest. It is known from previous experience with the machines that 5%
of the output from machine A is defective, 4% from machine B and 2% from machine C. A
bolt is chosen at random from the production line and found to be defective. What is the
probability that it came from Machine A?
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Exercise 4.8: A multiple choice exam has 4 choices for each question. The student has
studied enough so that the probability they will know the answer to a question is 0.5, the
probability that the student will be able to eliminate one choice is 0.25, otherwise all 4
choices seem equally plausible. If they know the answer they will get the question correct.
If not they have to guess from the 3 or 4 choices. As the teacher you would like the test to
measure what the student knows, and not how well they can guess. If the student answers
a question correctly what’s the probability they actually knew the answer?

Exercise 4.9: A blood test indicates the presence of Amyotrophic lateral sclerosis (ALS)
95% of the time when ALS is actually present. The same test indicates the presence of ALS
0.5% of the time when the disease is not actually present. One percent of the population
actually has ALS. Calculate the probability that a person actually has ALS given that the
test indicates the presence of ALS.

Exercise 4.10: A survey conducted in a college found that 40% of the students watch
show A and 17% of the students who follow show A, also watch show B. In addition, 20%
of the students watch show B.

(1) What is the probability that a randomly chosen student follows both shows?
(2) What is the conditional probability that the student follows show A given that

she/he follows show B?

Exercise 4.11: Use Bayes’ formula to solve the following problem. An airport has problems
with birds. If the weather is sunny, the probability that there are birds on the runway is
1/2; if it is cloudy, but dry, the probability is 1/3; and if it is raining, then the probability
is 1/4. The probability of each type of the weather is 1/3. Given that the birds are on the
runaway, what is the probability

(1) that the weather is sunny?
(2) that the weather is cloudy (dry or rainy)?
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4.4. Selected solutions

Solution to Exercise 4.1(A):Note that the sample space is S = {(i, j) | i, j = 1, 2, 3, 4, 5, 6}
with each outcome equally likely. Then

A = {(1, 2) , (2, 1)}
B = {(1, 6) , (2, 5) , (3, 4) , (4, 3) , (5, 2) , (6, 1)}
C = {(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (1, 6) , (2, 1) , (3, 1) , (4, 1) , (5, 1), (6, 1)}

Then

P (A | C) =
P (A ∩ C)

P(C)
=

2/36

11/36
=

2

11
.

Solution to Exercise 4.1(B):

P (B | C) =
P (B ∩ C)

P(C)
=

2/36

11/36
=

2

11
.

Solution to Exercise 4.1(C): Note that P(A) = 2/36 6= P (A | C), so they are not inde-
pendent. Similarly, P (B) = 6/36 6= P(B | C), so they are not independent.

Solution to Exercise 4.2: Let E be the event “there is at least one 6" and F be the
event }the sum is at least 9” We want to calculate P (F | E). Begin by noting that there
are 36 possible rolls of these two dice and all of them are equally likely. We can see that
11 different rolls of these two dice will result in at least one 6, so P(E) = 11

36
. There

are 7 different rolls that will result in at least one 6 and a sum of at least 9 . They are
((6, 3), (6, 4), (6, 5), (6, 6), (3, 6), (4, 6), (5, 6)), so P (E ∩ F ) = 7

36
. This tells us that

P (F | E) =
P (E ∩ F )

P(E)
=

7/36

11/36
=

7

11
.

Solution to Exercise 4.3: Let Bi denote the event “box i is chosen”. Since both are equally
likely, P(B1) = P(B2) = 1

2
. In addition, we know that P(G | B1) = 1

2
and P(G | B2) = 2

5
.

Applying Bayes’ rule yields

P(B1 | G) =
P(G | B1)P(B1)

P(G | B1)P(B1) + P(G | B2)P(B2)
=

1/4

1/4 + 1/5
=

5

9
.

Solution to Exercise 4.4(A): Suppose we look at students who have gotten the flu shot.
Let E be the event “a student is exposed to the flu” and let F be the event “a student gets
the flu”. We know that P (E) = 60% and P (F | E) = 15%. This means that P (E ∩ F ) =
(.6) (.15) = .09, and it is clear that P (Ec ∩ F ) = 0. Since P (F ) = P (E ∩ F ) + P (Ec ∩ F ),
we see thatP (F ) = .09.

Solution to Exercise 4.4(B): Suppose we look at students who have not gotten the flu
shot. Let E be the event “a student is exposed to the flu” and let F be the event “a student
gets the flu”. We know that P (E) = 60% and P (F | E) = 80%. This means that P (E∩F ) =
(.6) (.8) = .48, and it is clear that P (Ec ∩F ) = 0. Since P (F ) = P (E ∩F ) +P (Ec ∩F ), we
see that P (F ) = .48.
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Solution to Exercise 4.5: Let M be the event “an American is a man" and letC be the
event “” an American is color blind.". Then

P (M | C) =
P (C |M)P(M)

P (C |M)P(M) + P (C |M c)P(M c)

=
(.05) (.49)

(.05) (.49) + (.0025) (.51)
≈ .9505.

Solution to Exercise 4.6(A): Let H be the event “works over 5000 hours”. Let X be the
event comes from factory X“ and Y be the event “comes fom factory Y ”. Then by the Law
of Total Probability

P (H) = P (H | X)P(X) + P (H | Y )P(Y )

= (.99) (.6) + (.95) (.4)

= .974.

Solution to Exercise 4.6(B): By Part (a) we have

P (Y | H) =
P (H | Y )P(Y )

P (H)

=
(.95) (.4)

.974
≈ .39.

Solution to Exercise 4.6(C): We again use the result from Part (a)

P (X | Hc) =
P (Hc | X)P(X)

P (Hc)
=
P (Hc | X)P(X)

1− P (H)

=
(1− .99) (.6)

1− .974
=

(.01) (.6)

.026
≈ .23

Solution to Exercise 4.7: Let D = {Bolt is defective}, A = {bolt is form machine A},
B = {bolt is from machine C}. Then by Baye’s theorem

P (A | D) =
P (D | A)P(A)

P (D | A)P(A) + P (D | B)P(B) + P (D | C)P(C)

=
(.05) (.25)

(.05) (.25) + (.04) (.35) + (.02) (.4)

= .362.
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Solution to Exercise 4.8: Let C be the vent the students the problem correct and K the
event the students knows the answer. Using Bayes’ theorem we have

P (K | C)

=
P (C | K)P (K)

P (C)

=
P (C | K)P (K)

P (C | K)P (K) + P (C | Eliminates)P (Eliminates) + P (C | Guess)P (Guess)

=
1 · 1

2

1 · 1
2

+ 1
3
· 1

4
+ 1

4
· 1

4

=
24

31
≈ .774 = 77.4%.

Solution to Exercise 4.9: Let + signiffy a positive test result, and D means dissease is
present. Then

P (D | +) =
P (+ | D)P (D)

P (+ | D)P (D) + P (+ | Dc)P (Dc)

=
(.95) (.01)

(.95) (.01) + (.005) (.99)

= .657.



CHAPTER 5

Random variables

5.1. Introduction

A random variable is a real-valued function on S. Random variables are usually denoted by
X, Y, Z, . . .

Example 5.1: If one rolls a die, let X denote the outcome (i.e., either 1,2,3,4,5,6).

Example 5.2: If one rolls a die, let Y be 1 if an odd number is showing and 0 if an even
number is showing.

Example 5.3: If one tosses 10 coins, let X be the number of heads showing.

Example 5.4: In n trials, let X be the number of successes.

A discrete random variable is one that can only take countably many values. For a discrete
random variable, we define the probability mass function or the density by p(x) = P(X = x).
Here P(X = x) is an abbreviation for P({ω ∈ S : X(ω) = x}). This type of abbreviation is
standard. Note

∑
i p(xi) = 1 since X must equal something.

Let X be the number showing if we roll a die. The expected number to show up on a roll of
a die should be 1 · P(X = 1) + 2 · P(X = 2) + · · · + 6 · P(X = 6) = 3.5. More generally, we
define

EX =
∑

{x:p(x)>0}

xp(x)

to be the expected value or expectation or mean of X.

Example 5.5: If we toss a coin and X is 1 if we have heads and 0 if we have tails, what
is the expectation of X?

Answer.

pX(x) =


1
2
, x = 1

1
2
, x = 0

0, all other values of x.

Hence EX = (1)(1
2
) + (0)(1

2
) = 1

2
.

49
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Example 5.6: Suppose X = 0 with probability 1
2
, 1 with probability 1

4
, 2 with probability

1
8
, and more generally n with probability 1/2n+1. This is an example where X can take

infinitely many values (although still countably many values). What is the expectation of
X?

Answer. Here pX(n) = 1/2n+1 if n is a nonnegative integer and 0 otherwise. So

EX = (0)1
2

+ (1)1
4

+ (2)1
8

+ (3) 1
16

+ · · · .
This turns out to sum to 1. To see this, recall the formula for a geometric series:

1 + x+ x2 + x3 + · · · = 1

1− x
.

If we differentiate this, we get

1 + 2x+ 3x2 + · · · = 1

(1− x)2
.

We have

EX = 1(1
4
) + 2(1

8
) + 3( 1

16
+ · · ·

= 1
4

[
1 + 2(1

2
) + 3(1

4
) + · · ·

]
= 1

4

1

(1− 1
2
)2

= 1.

Example 5.7: Suppose we roll a fair die. If 1 or 2 is showing, let X = 3; if a 3 or 4 is
showing, let X = 4, and if a 5 or 6 is showing, let X = 10. What is EX?

Answer. We have P(X = 3) = P(X = 4) = P(X = 10) = 1
3
, so

EX =
∑

xP(X = x) = (3)(1
3
) + (4)(1

3
) + (10)(1

3
) = 17

3
.

Let’s give a proof of the linearity of expectation in the case when X and Y both take only
finitely many values.

Let Z = X + Y , let a1, . . . , an be the values taken by X, b1, . . . , bm be the values taken by
Y , and c1, . . . , c` the values taken by Z. Since there are only finitely many values, we can
interchange the order of summations freely.

We write

EZ =
∑̀
k=1

ckP(Z = ck) =
∑̀
k=1

n∑
i=1

ckP(Z = ck, X = ai)

=
∑
k

∑
i

ckP(X = ai, Y = ck − ai)

=
∑
k

∑
i

m∑
j=1

ckP(X = ai, Y = ck − ai, Y = bj)

=
∑
i

∑
j

∑
k

ckP(X = ai, Y = ck − ai, Y = bj).
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Now P(X = ai, Y = ck − ai, Y = bj) will be 0, unless ck − ai = bj. For each pair (i, j), this
will be non-zero for only one value k, since the ck are all different. Therefore, for each i and j∑

k

ckP(X = ai, Y = ck − ai, Y = bj)

=
∑
k

(ai + bj)P(X = ai, Y = ck − ai, Y = bj)

= (ai + bj)P(X = ai, Y = bj).

Substituting,

EZ =
∑
i

∑
j

(ai + bj)P(X = ai, Y = bj)

=
∑
i

ai
∑
j

P(X = ai, Y = bj) +
∑
j

bj
∑
i

P(X = ai, Y = bj)

=
∑
i

aiP(X = ai) +
∑
j

bjP(Y = bj)

= EX + EY.

It turns out there is a formula for the expectation of random variables like X2 and eX . To
see how this works, let us first look at an example.

Suppose we roll a die and let X be the value that is showing. We want the expectation EX2.
Let Y = X2, so that P(Y = 1) = 1

6
, P(Y = 4) = 1

6
, etc. and

EX2 = EY = (1)1
6

+ (4)1
6

+ · · ·+ (36)1
6
.

We can also write this as

EX2 = (12)1
6

+ (22)1
6

+ · · ·+ (62)1
6
,

which suggests that a formula for EX2 is
∑

x x
2P(X = x). This turns out to be correct.

The only possibility where things could go wrong is if more than one value of X leads to
the same value of X2. For example, suppose P(X = −2) = 1

8
,P(X = −1) = 1

4
,P(X = 1) =

3
8
,P(X = 2) = 1

4
. Then if Y = X2, P(Y = 1) = 5

8
and P(Y = 4) = 3

8
. Then

EX2 = (1)5
8

+ (4)3
8

= (−1)2 1
4

+ (1)2 3
8

+ (−2)2 1
8

+ (2)2 1
4
.

So even in this case EX2 =
∑

x x
2P(X = x).

Theorem 5.1: E g(X) =
∑
g(x)p(x).

Proof. Let Y = g(X). Then

EY =
∑
y

yP(Y = y) =
∑
y

y
∑

{x:g(x)=y}

P(X = x)

=
∑
x

g(x)P(X = x).
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Example 5.8: EX2 =
∑
x2p(x).

EXn is called the nth moment of X. If M = EX, then

Var(X) = E (X −M)2

is called the variance of X. The square root of Var(X) is the standard deviation of X.

The variance measures how much spread there is about the expected value.

Example 5.9: We toss a fair coin and let X = 1 if we get heads, X = −1 if we get tails.
Then EX = 0, so X − EX = X, and then VarX = EX2 = (1)2 1

2
+ (−1)2 1

2
= 1.

Example 5.10: We roll a die and let X be the value that shows. We have previously
calculated EX = 7

2
. So X − EX equals

−5

2
,−3

2
,−1

2
,
1

2
,
3

2
,
5

2
,

each with probability 1
6
. So

VarX = (−5
2
)2 1

6
+ (−3

2
)2 1

6
+ (−1

2
)2 1

6
+ (1

2
)2 1

6
+ (3

2
)2 1

6
+ (5

2
)2 1

6
= 35

12
.

Note that the expectation of a constant is just the constant. An alternate expression for the
variance is

VarX = EX2 − 2E (XM) + E (M2)

= EX2 − 2M2 +M2

= EX2 − (EX)2.



5.2. FURTHER EXAMPLES AND APPLICATIONS 53

5.2. Further examples and applications

5.2.1. Random Variables. When we perform an experiment, many times we are in-
terested in some quantity (a function) related to the outcome, instead of the outcome itself.
That means we want to attach a numerical value to each outcome. A random variable is
thus a function X : S → R and we can think of it as a numerical value that is random. We
will use capital letters to denote random variables.

Example 5.11: Toss a coin and define

X =

{
1 if outcome is heads (H)
0 if outcome is tails (T).

As a random variable, X (H) = 1 and X (T ) = 0. Note that we can perform computations
on real numbers but not on the sample space S = {H,T}. This shows the need to covert
outcomes to numerical values.

Example 5.12: Let X be the amount of liability (damages) a driver causes in a year. In
this case, X can be any dollar amount. Thus X can attain any value in [0,∞).

Example 5.13: Toss a coin 3 times. Let X be the number of heads that appear, so that
X can take the values 0, 1, 2, 3. What are the associated probabilities to each value?

Answer.

P (X = 0) = P ((T, T, T )) =
1

23
=

1

8

P (X = 1) = P ((T, T,H) , (T,H, T ) , (H,T, T )) =
3

8

P (X = 2) = P ((T,H,H) , (H,H, T ) , (H,T,H)) =
3

8

P (X = 3) = P ((H,H,H)) =
1

8
.

Example 5.14: Toss a coin n times. Let X be the number of heads that occur. This
random variable can take the values 0, 1, 2, . . . , n. From the binomial formula we can conclude

that P(X = k) =
1

2n

(
n
k

)
.

5.2.2. Discrete Random Variables.

Definition 5.2: A random variable that has countably many possible values is called a
discrete random variable.

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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Example 5.15: Suppose we toss a fair coin and we let X be 1 if we have H and X be 0
if we have T . The probability mass function of this random variable is

pX(x) =


1
2

x = 0
1
2

x = 1,

0 otherwise.

Oftentimes the probability mass function (p.m.f.) will already be given and we can then use
it to compute probabilities.

Example 5.16: The p.m.f. of X is given by pX(i) = e−λ λ
i

i!
for i = 0, 1, 2, . . . and some

positive real number λ.

(a) Find P (X = 0).
Answer. By definition we have P (X = 0) = pX(0) = e−λ λ

0

0!
= e−λ.

(b) Find P (X > 2).
Answer. Note that

P (X > 2) = 1− P (X ≤ 2)

= 1− P (X = 0)− P (X = 1)− P (X = 2)

= 1− pX(0)− pX(1)− pX(2)

= 1− e−λ − λe−λ − λ2e−λ

2
.

5.2.3. Expected Value. One of the most important concepts in probability is that of
expectation. Given a random variable X, one can ask what is the average value of X, that is,
what is the expected value of X. For a random variable X with p.m.f. pX(x), we defined
its expectation, or expected value of X as

E [X] =
∑

x:p(x)>0

xpX(x).

This formula works if the state space S is countable.

Example 5.17: Suppose again that we have a coin, and let X(H) = 0 and X (T ) = 1.
What is EX if the coin is not necessarily fair?

EX = 0 · pX(0) + 1 · pX(1) = P(T ).

Example 5.18: Let X be the outcome when we roll a fair die. What is EX?

EX = 1 · 1

6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
=

1

6
(1 + 2 + 3 + 4 + 5 + 6) =

21

6
=

7

2
= 3.5.

Note that in the last example X can never be 3.5. This means that the expectation may not
be a value attained by X. It serves the purpose of giving an average value for X.
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Example 5.19: LetX be the number of insurance claims a person makes in a year. Assume
that X can take the values 0, 1, 2, 3 . . . with P (X = 0) = 2

3
, P (X = 1) = 2

9
, . . . ,P (X = n) =

2
3n+1 . Find the expected number of claims this person makes in a year.

Answer. Note that X has infinite but countable number of values, hence it is a discrete
random variable. We have that pX(i) = 2

3i+1 . We compute using the definition of expectation,

EX = 0 · pX(0) + 1 · pX(1) + 2 · pX(2) + · · ·

= 0 · 2

3
+ 1

2

32
+ 2

2

33
+ 3

2

34
+ · · ·

=
2

32

(
1 + 2

1

3
+ 3

1

32
+ 4

1

33
+ · · ·

)
=

2

9

(
1 + 2x+ 3x2 + · · ·

)
, where x =

1

3

=
2

9

1

(1− x)2 =
2

9
(
1− 1

3

)2 =
2

22
=

1

2
.

5.2.4. The cumulative distribution function (c.d.f.)

Definition 5.3: LetX be a random variable. The cumulative distribution function (c.d.f.),
or the distribution function of X is defined as

FX(x) = P (X ≤ x) ,

for any x ∈ R.

Note that if X is discrete and pX is its p.m.f. , then

F (x0) =
∑
x≤x0

pX(x).

Example 5.20: Suppose that X has the following p.m.f.:

pX(0) = P (X = 0) =
1

8

pX(1) = P (X = 1) =
3

8

pX(2) = P (X = 2) =
3

8

pX(3) = P (X = 3) =
1

8
.

Find the c.d.f of X and plot the graph of the c.d.f.
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Answer. Summing up the probabilities up to the value of x we get the following:

FX(x) =



0 −∞ < x < 0,
1
8

0 ≤ x < 1,
4
8

1 ≤ x < 2,
7
8

2 ≤ x < 3,

1 3 ≤ x <∞.

Two graphs of this function are given here:

−1 0 1 2 3 4
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1

Note that this is a step function.

Here are some properties of the c.d.f.:

1. F is nondecreasing , that is if x < y, then F (x) ≤ F (y).
2. limx→∞ F (x) = 1.
3. limx→−∞ F (x) = 0.
4. F is right continuous. That is for any decreasing sequence xn ↓ x, then lim

n→∞
FX(xn) =

FX(x).
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Example 5.21: Let X have distribution

FX(x) =



0 x < 0,
x
2

0 ≤ x < 1,
2
3

1 ≤ x < 2,
11
12

2 ≤ x < 3,

1 3 ≤ x.

(a) Compute P (X < 3).
Answer. We have that P (X < 3) = lim

n→∞
P
(
X ≤ 3− 1

n

)
= lim

n→∞
FX
(
3− 1

n

)
= 11

12
.

(b) Compute P(X = 1).
Answer. We have that

P(X = 1) = P(X ≤ 1)− P (X < 1) = FX(1)− lim
x→1

x

2
=

2

3
− 1

2
=

1

6
.

(c) Compute P(2 < X ≤ 4).
Answer. We have that

P(2 < X ≤ 4) = FX(4)− FX(2) =
1

12
.

5.2.5. Expectated Value of Sums of Random Variables. Recall our current defi-
nition of EX. If, informally, we can list out X = x1, x2, . . . , the probability mass function

of X will be given by pX(xi), i = 1, 2, . . . and EX =
∞∑
i=1

xip(xi). In this section we will

introduce another definition of expectation. It will allow us to prove the linearity of the
expectation in a different way. That is, the goal is to show (again) that if Z = X + Y then
E [X + Y ] = EX + EY .

If S is a countable sample space, then

EX =
∑
ω∈S

X(ω)P ({ω}) .

In a little bit we will prove that this definition is consistent with the previous definition. But
first, let us do some examples.

Example 5.22: Let S = {1, 2, 3, 4, 5, 6} and assume that X(1) = X(2) = 1, X(3) =
X(4) = 3, and X(5) = X(6) = 5.

(1) Using the initial definition, the random variable X takes the values 1, 3, 5 and pX(1) =
pX(3) = pX(5) = 1

3
. Then, EX = 1 · 1

3
+ 31

3
+ 51

3
= 9

3
= 3.

(2) Using the equivalent definition, we list all of S = {1, 2, 3, 4, 5, 6} and then

EX = X(1)P ({1}) + · · ·+X(6) · P ({6}) = 1
1

6
+ 1

1

6
+ 3

1

6
+ 3

1

6
+ 5

1

6
+ 1

1

6
= 3.

The difference between the two definitions are the following.
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• We list all the values that X can attain and use the pX(x) for only those values. In a sense
we are looking at the range of X.
• We list all the possible outcomes that are in the domain of X.

Proposition 5.4: If X is a discrete random variable and S is countable, then the two
definitions are equivalent.

Proof. We start with the first definition. Let X = x1, x2, . . .

EX =
∑
xi

xip(xi) =
∑
xi

xiP (X = xi) =
∑
xi

xi
∑

ω∈{ω:X(ω)=xi}

P (ω)

=
∑
xi

∑
ω∈{ω:X(ω)=xi}

xiP (ω) =
∑
xi

∑
ω∈{ω:X(ω)=xi}

X(ω)P (ω)

=
∑
ω∈S

X(ω)P (ω) ,

where we used that each Si = {ω : X(ω) = xi} are mutually exclusive events that union up
to S.

Using this definition, we can easily prove linearity of the expectation.

Theorem 5.5: (Linearity) If X and Y are discrete random variables and a ∈ R then

(i) E [X + Y ] = EX + EY .
(ii) E [aX] = aEX.

Proof. (i) We have that

E [X + Y ] =
∑
ω∈S

(X(ω) + Y (ω))P (ω)

=
∑
ω∈S

(X(ω)P (ω) + Y (ω)P (ω))

=
∑
ω∈S

X(ω)P (ω) +
∑
ω∈S

Y (ω)P (ω)

= EX + EY.

(ii) If a ∈ R, then

E [aX] =
∑
ω∈S

(aX(ω))P (ω) = a
∑
ω∈S

X(ω)P (ω) = aEX.

Using induction, linearity holds a sequence of random variables X1, X2, . . . , Xn.

Theorem 5.6: If X1, X2, . . . , Xn are random variables, then

E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn].
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5.2.6. Expectation of a Function of a Random Variable. Given a random variable
X we would like to compute the expected value of expressions such as X2, eX or sinX. How
can we do this?

Example 5.23: Let X be a random variable whose p.m.f. is given by

P (X = −1) = .2,

P (X = 0) = .5

P (X = 1) = .3

Let Y = X2. Find E[Y ].

Answer. Note that Y takes the values 02, (−1)2 and 12, which reduce to 0 or 1. Also notice
that pY (1) = .2 + .3 = .5 and pY (0) = .5. Thus, E[Y ] = 0 · .5 + 1 · .5 = .5.

Note that EX2 = .5 . While (EX)2 = .01 since EX = .3− .2 = .1. Thus in general

EX2 6= (EX)2 .

In general, there is a formula for g(X) where g is function that uses the fact that g(X) will
be g(x) for some x such that X = x. We recall Theorem 5.1. If X is a discrete distribution
that takes the values xi, i ≥ 1 with probability pX(xi), respectively, then for any real valued
function g we have that

E [g (X)] =
∞∑
i=1

g (xi) pX(xi).

Note that
EX2 =

∑
x2
i pX(xi)

will be useful.

Example 5.24: Let us revisit the previous example. Let X denote a random variable such
that

P (X = −1) = .2

P (X = 0) = .5

P (X = 1) = .3

Let Y = X2. Find EY .

Answer. We have that EX2 =
∑
x2
i pX(xi) = (−1)2 (.2) + 02(.5) + 12(.3) = .5.

Definition 5.7: The quantity EXn for n ≥ 1, is called the nth moment of X. The first
moment, that is EX, is also called the mean of X.

From Theorem 5.1 we know that the nth moment can be calculated by

EXn =
∑

x:p(x)>0

xnpX(x).
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5.2.7. Variance. The variance of a random variable is a measure of how spread out the
values of X are. The expectation of a random variable is quantity that help us differentiate
between random variables, but it does not tell us how spread out its values are. For example,
consider

X = 0 with probability 1

Y =

{
−1 p = 1

2

1 p = 1
2

Z =

{
−100 p = 1

2

100 p = 1
2

.

What are the expected values? The are 0, 0 and 0. But there is much greater spread in Z
than Y and Y than X. Thus expectation is not enough to detect spread, or variation.

Recall the alternative formula to compute the variance

Var (X) = E
[
X2
]
− (E [X])2 .

Example 5.25: Calculate Var(X) if X represents the outcome when a fair die is rolled.

Answer. Previously we calculated that EX = 7
5
. Thus we only need to calculate the second

moment:
EX2 = 12

(
1

6

)
+ · · ·+ 62 1

6
=

91

6
.

Using our formula we have that

Var (X) = E
[
X2
]
− (E [X])2 =

91

6
−
(

7

5

)2

=
35

12
.

Another useful formula is the following.

Proposition 5.8: For constants a, b ∈ R we have that Var (aX + b) = a2Var (X).

Proof. We compute

Var (aX + b) = E
[
(aX + b− E [aX + b])2]

= E
[
(aX + b− aµ− b)2]

= E
[
a2 (X − µ)2]

= a2E
[
(X − µ)2]

= a2Var (X) .

Definition 5.9: The standard deviation of X is defined as

SD (X) =
√

Var(X).



5.3. EXERCISES 61

5.3. Exercises

Exercise 5.1: Three balls are randomly chosen with replacement from an urn containing
5 blue, 4 red, and 2 yellow balls. Let X denote the number of red balls chosen.

(a) What are the possible values of X?
(b) What are the probabilities associated to each value?

Exercise 5.2: Two cards are chosen from a standard deck of 52 cards. Suppose that
you win $2 for each heart selected, and lose $1 for each spade selected. Other suits (clubs
or diamonds) bring neither win nor loss. Let X denote your winnings. Determine the
probability mass function of X.

Exercise 5.3: A financial regulator from the FED will evaluate two banks this week. For
each evaluation, the regulator will choose with equal probability between two different stress
tests. Failing under test one costs a bank 10K fee, whereas failing test 2 costs 5K. The
probability that the first bank fails any test is 0.4. Independently, the second bank will fail
any test with 0.5 probability. Let X denote the total amount of fees the regulator can obtain
after having evaluated both banks. Determine the cumulative distribution function of X.

Exercise 5.4: Five buses carry students from Hartford to campus. Each bus carries,
respectively, 50, 55, 60, 65, and 70 students. One of these students and one bus driver are
picked at random.

(a) What is the expected number of students sitting in the same bus that carries the ran-
domly selected student?

(b) Let Y be the number of students in the same bus as the randomly selected driver. Is
E[Y ] larger than the expectation obtained in the previous question?

Exercise 5.5: Two balls are chosen randomly from an urn containing 8 white balls, 4
black, and 2 orange balls. Suppose that we win $2 for each black ball selected and we lose
$1 for each white ball selected. Let X denote our winnings.

(a) What are the possible values of X?
(b) What are the probabilities associated to each value?

Exercise 5.6: A card is drawn at random from a standard deck of playing cards. If it is
a heart, you win $1. If it is a diamond, you have to pay $2. If it is any other card, you win
$3. What is the expected value of your winnings?

Exercise 5.7: The game of roulette consists of a small ball and a wheel with 38 numbered
pockets around the edge that includes the numbers 1− 36, 0 and 00. As the wheel is spun,
the ball bounces around randomly until it settles down in one of the pockets.

(a) Suppose you bet $1 on a single number and random variableX represents the (monetary)
outcome (the money you win or lose). If the bet wins, the payoff is $35 and you get
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your money back. If you lose the bet then you lose your $1. What is the expected profit
on a 1 dollar bet?

(b) Suppose you bet $1 on the numbers 1 − 18 and random variable X represents the
(monetary) outcome (the money you win or lose). If the bet wins, the payoff is $1
and you get your money back. If you lose the bet then you lose your $1. What is the
expected profit on a 1 dollar bet ?

Exercise 5.8: An insurance company finds that Mark has a 8% chance of getting into a
car accident in the next year. If Mark has any kind of accident then the company guarantees
to pay him $10, 000. The company has decided to charge Mark a $200 premium for this one
year insurance policy.

(a) Let X be the amount profit or loss from this insurance policy in the next year for the
insurance company. Find EX, the expected return for the Insurance company? Should
the insurance company charge more or less on it’s premium?

(b) What amount should the insurance company charge Mark in order to guarantee an
expected return of $100?

Exercise 5.9: A random variable X has the following probability mass function: p(0) = 1
3
,

p(1) = 1
6
, p(2) = 1

4
, p(3) = 1

4
. Find its expected value, variance, and standard deviation.

Also, plot its c.d.f.

Exercise 5.10: Suppose X is a random variable such that E [X] = 50 and Var(X) = 12.
Calculate the following quantities.

(a) E [X2]
(b) E [3X + 2]
(c) E

[
(X + 2)2]

(d) Var [−X]
(e) SD (2X).

Exercise 5.11: Does there exist a random variableX such that E [X] = 4 and E [X2] = 10?
Why or why not ? (Hint: Look at its variance)

Exercise 5.12: A box contains 25 peppers of which 5 are red and 20 green. Four peppers
are randomly picked from the box. What is the expected number of red peppers in this
sample of four?
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5.4. Selected solutions

Solution to Exercise 5.1:

(a) X can take the values 0, 1, 2 and 3.
(b) Since balls are withdrawn with replacement, we can think of “choosing red” as a success

and apply Bernouilli trials with p = P(red) = 4
11
. Then, for each k = 0, 1, 2, 3 we have

P(X = k) =

(
3

k

)(
4

11

)k
·
(

7

11

)3−k

.

Solution to Exercise 5.2: The random variable X can take the values −2,−1, 0, 1, 2, 4.
Moreover,

P(X = −2) = P(2♠) =

(
13
2

)(
52
2

) P(X = −1) = P(1♠ and 1(♦ or ♣)) =
13 · 26(

52
2

)
P(X = 0) = P(2(♦ or ♣)) =

(
26
2

)(
52
2

) P(X = 1) = P(1♥ and 1♠) =
13 · 13(

52
2

)
P(X = 2) = P(1♥ and 1(♦ or ♣)) = P(X = −1) P(X = 4) = P(2♥) = P(X = −2).

the probability mass function is given by pX(x) = P(X = x) for x = −2,−1, 0, 1, 2, 4 and
pX(x) = 0 otherwise.

Solution to Exercise 5.3: The random variable X can take the values 0, 5, 10, 15 and 20
depending on which test was applied to each bank, and if the bank fails the evaluation or
not. Let us write Bi =“i-th bank fails” and Ti=“test i applied”. Then, P(T1) = P(T2) = 0.5,
P(B1) = P(B1 | T1) = P(B1 | T2) = 0.4 and P(B2) = P(B2 | T1) = P(B2 | T2) = 0.5. Since
banks and tests are independent we have

P(X = 0) = P(Bc
1 ∩Bc

2) = P(Bc
1) · P(Bc

2) = 0.6 · 0.5 = 0.3,

P(X = 5) = P(B1)P(T1)P(Bc
2) + P(Bc

1)P(B2)P(T2) = 0.25,

P(X = 10) = P(B1)P(T1)P(Bc
2) + P(B1)P(T2)P(B2)P(T2) + P(Bc

1)P(B2)P(T1) = 0.3

P(X = 15) = P(B1)P(T1)P(B2)P(T2) + P(B1)P(T2)P(B2)P(T1) = 0.1

P(X = 20) = P(B1)P(T1)P(B2)P(T1) = 0.05.

The probability distribution function is given by

FX(x) =



0 x < 0,

0.3 0 ≤ x < 5,

0.55 5 ≤ x < 10,

0.85 10 ≤ x < 15,

0.95 15 ≤ x < 20,

1 x ≥ 20.

The graph of the probability distribution function is:
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Solution to Exercise 5.4: Let X denote the number of students in the bus that carries
the random selected student.

(a) In total there are 300 students, hence P(X = 50) = 50
300

, P(X = 55) = 55
300

, P(X = 60) =
60
300

, P(X = 65) = 65
300

and P(X = 70) = 70
300

. The expected value of X is thus

E[X] = 50
50

300
+ 55

55

300
+ 60

60

300
+ 65

65

300
+ 70

70

300
≈ 60.8333.

(b) In this case, the probability of choosing a bus driver is 1
5
, so that

E[Y ] =
1

5
(50 + 55 + 60 + 65 + 70) = 60

which is slightly less than the previous one.

Solution to Exercise 5.5(A): Note that X = −2,−1,−0, 1, 2, 4.

Solution to Exercise 5.5(B): Then

P (X = 4) = P (BB) =

(
4
2

)
(

14
2

) =
6

91
P (X = 0) = P (OO) =

(
2
2

)
(

14
2

) =
1

91

P (X = 2) = P (BO) =

(
4
1

)(
2
1

)
(

14
2

) =
8

91
P (X = −1) = P (WO) =

(
8
1

)(
2
1

)
(

14
2

) =
16

91

P (X = 1) = P (BW ) =

(
4
1

)(
8
1

)
(

14
2

) =
32

91
P (X = −2) = P (WW ) =

(
8
2

)
(

14
2

) =
28

91

Solution to Exercise 5.6:

EX = 1 · 1

4
+ (−2)

1

4
+ 3 · 1

2
=

5

4
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Solution to Exercise 5.7(A): The expected profit is EX = 35 ·
(

1
38

)
− 1 · 37

38
= −$.0526.

Solution to Exercise 5.7(B): If you will then your profit will be $1. If you lose then you
lose your $1 bet. The expected profit is EX = 1 ·

(
18
38

)
− 1 · 20

38
= −$.0526.

Solution to Exercise 5.8(A): If Mark has no accident then the company makes a profit
of 200 dollars. If Mark has an accident they have to pay him 10, 000 dollars, but regardless
they received 200 dollars from him as an yearly premium. We have

EX = (200− 10, 000) · (.08) + 200 · (.92) = −600.

On average the company will lose $600 dollars. Thus the company should charge more.

Solution to Exercise 5.8(B): Let P be the premium. Then in order to guarantee an
expected return of 100 then

100 = EX = (P − 10, 000) · (.08) + P · (.92)

and solving for P we get P = $900.

Solution to Exercise 5.9: Let’s apply the formulas

EX = 0 · 1

3
+ 1 · 1

6
+ 2 · 1

4
+ 3 · 1

4
=

34

24
.

Now to calculate variance we have

Var(X) = E
[
X2
]
− (EX)2

= 02 · 1

3
− 12 1

6
+ 22 · 1

4
+ 32 · 1

4
−
(

34

24

)2

=
82

24
− 342

242

=
812

242
.

Taking the square root gives us

SD(X) =
2
√

203

24
.

The plot of the c.d.f. is:
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Solution to Exercise 5.10(A): Since Var(X) = E [X2]− (EX)2 = 12 then

E
[
X2
]

= Var(X) + (EX)2 = 12 + 502 = 2512.

Solution to Exercise 5.10(B):

E [3X + 2] = 3E [X] + E [2] = 3 · 50 + 2 = 152.

Solution to Exercise 5.10(C):

E
[
(X + 2)2] = E

[
X2
]

+ 4E [X] + 4 = 2512 + 4 · 50 + 4 = 2716.

Solution to Exercise 5.10(D):

Var [−X] = (−1)2 Var(X) = 12

Solution to Exercise 5.10(E):

SD (2X) =
√

Var(2X) =
√

22Var(X) =
√

48 = 2
√

12.

Solution to Exercise 5.11: Using the hint let’s compute the variance of this random
variable which would be Var(X) = E [X2]− (EX)2 = 10− 42 = −6. But we know a random
variable cannot have a negative variance. Thus no such random variable exists.



CHAPTER 6

Some discrete distributions

6.1. Introduction

Bernoulli distribution. A r.v. X such that P(X = 1) = p and P(X = 0) = 1 − p is said
to be a Bernoulli r.v. with parameter p. Note EX = p and EX2 = p, so VarX = p− p2 =
p(1− p).

Binomial distribution. A r.v. X has a binomial distribution with parameters n and

p if P(X = k) =

(
n
k

)
pk(1 − p)n−k. The number of successes in n trials is a binomial.

After some cumbersome calculations one can derive EX = np. An easier way is to realize
that if X is binomial, then X = Y1 + · · ·+ Yn, where the Yi are independent Bernoulli’s, so
EX = EY1 + · · ·+EYn = np. We haven’t defined what it means for r.v.’s to be independent,
but here we mean that the events (Yk = 1) are independent. The cumbersome way is as
follows.

EX =
n∑
k=0

k

(
n
k

)
pk(1− p)n−k =

n∑
k=1

k

(
n
k

)
pk(1− p)n−k

=
n∑
k=1

k
n!

k!(n− k)!
pk(1− p)n−k

= np
n∑
k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk−1(1− p)(n−1)−(k−1)

= np

n−1∑
k=0

(n− 1)!

k!((n− 1)− k)!
pk(1− p)(n−1)−k

= np

n−1∑
k=0

(
n− 1
k

)
pk(1− p)(n−1)−k = np.

To get the variance of X, we have

EX2 =
n∑
k=1

EY 2
k +

∑
i 6=j

EYiYj.

Now

EYiYj = 1 · P(YiYj = 1) + 0 · P(YiYj = 0)

= P(Yi = 1, Yj = 1) = P(Yi = 1)P(Yj = 1) = p2

67
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using independence. The square of Y1 + · · ·+ Yn yields n2 terms, of which n are of the form
Y 2
k . So we have n2 − n terms of the form YiYj with i 6= j. Hence

VarX = EX2 − (EX)2 = np+ (n2 − n)p2 − (np)2 = np(1− p).

Later we will see that the variance of the sum of independent r.v.’s is the sum of the variances,
so we could quickly get VarX = np(1− p). Alternatively, one can compute E (X2)− EX =
E (X(X − 1)) using binomial coefficients and derive the variance of X from that.

Poisson distribution. X is Poisson with parameter λ if

P(X = i) = e−λ
λi

i!
.

Note
∑∞

i=0 λ
i/i! = eλ, so the probabilities add up to one.

To compute expectations,

EX =
∞∑
i=0

ie−λ
λi

i!
= e−λλ

∞∑
i=1

λi−1

(i− 1)!
= λ.

Similarly one can show that

E (X2)− EX = EX(X − 1) =
∞∑
i=0

i(i− 1)e−λ
λi

i!

= λ2e−λ
∞∑
i=2

λi−2

(i− 2)!

= λ2,

so EX2 = E (X2 −X) + EX = λ2 + λ, and hence VarX = λ.

Example 6.1: Suppose on average there are 5 homicides per month in a given city. What
is the probability there will be at most 1 in a certain month?

Answer. If X is the number of homicides, we are given that EX = 5. Since the expectation
for a Poisson is λ, then λ = 5. Therefore P(X = 0) + P(X = 1) = e−5 + 5e−5.

Example 6.2: Suppose on average there is one large earthquake per year in California.
What’s the probability that next year there will be exactly 2 large earthquakes?

Answer. λ = EX = 1, so P(X = 2) = e−1(1
2
).

We have the following proposition.

Proposition 6.1: If Xn is binomial with parameters n and pn and npn → λ, then P(Xn =
i)→ P(Y = i), where Y is Poisson with parameter λ.
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The above proposition shows that the Poisson distribution models binomials when the prob-
ability of a success is small. The number of misprints on a page, the number of automobile
accidents, the number of people entering a store, etc. can all be modeled by Poissons.

Proof. For simplicity, let us suppose λ = npn. In the general case we use λn = npn. We
write

P(Xn = i) =
n!

i!(n− i)!
pin(1− pn)n−i

=
n(n− 1) · · · (n− i+ 1)

i!

(λ
n

)i(
1− λ

n

)n−i
=
n(n− 1) · · · (n− i+ 1)

ni
λi

i!

(1− λ/n)n

(1− λ/n)i
.

The first factor tends to 1 as n → ∞. (1− λ/n)i → 1 as n → ∞ and (1− λ/n)n → e−λ as
n→∞.

Uniform distribution. Let P(X = k) = 1
n
for k = 1, 2, . . . , n. This is the distribution of

the number showing on a die (with n = 6), for example.

Geometric distribution. Here P(X = i) = (1− p)i−1p for i = 1, 2, . . .. In Bernoulli trials,
if we let X be the first time we have a success, then X will be geometric. For example, if
we toss a coin over and over and X is the first time we get a heads, then X will have a
geometric distribution. To see this, to have the first success occur on the kth trial, we have
to have k − 1 failures in the first k − 1 trials and then a success. The probability of that is
(1 − p)k−1p. Since

∑∞
n=0 nr

n = 1/(1 − r)2 (differentiate the formula
∑
rn = 1/(1 − r)), we

see that EX = 1/p. Similarly we have VarX = (1− p)/p2.

Negative binomial distribution. Let r and p be parameters and set

P(X = n) =

(
n− 1
r − 1

)
pr(1− p)n−r, n = r, r + 1, . . . .

A negative binomial represents the number of trials until r successes. To get the above
formula, to have the rth success in the nth trial, we must exactly have r− 1 successes in the
first n− 1 trials and then a success in the nth trial.

Hypergeometric distribution. Set

P(X = i) =

(
m
i

)(
N −m
n− i

)
(
N
n

) .

This comes up in sampling without replacement: if there are N balls, of which m are one
color and the other N−m are another, and we choose n balls at random without replacement,
then X represents the probability of having i balls of the first color.
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6.2. Further examples and applications

6.2.1. Bernouli and Binomial Random Variables.

Example 6.3: A company prices its hurricane insurance using the following assumptions:

(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05.
(iii) The numbers of hurricanes in different calendar years are mutually independent.

Using the company’s assumptions, calculate the probability that there are fewer than 3
hurricanes in a 20-year period.

Answer. We have that X ∼ bin(20, .05) then

P (X < 3) = P (X ≤ 2)

=

(
20
0

)
(.05)0 (.95)20 +

(
20
1

)
(.05)1 (.95)19 +

(
20
2

)
(.05)2 (.95)18

= .9245.

Example 6.4: Phan has a .6 probability of making a free throw. Suppose each free throw
is independent of the other. If he attempts 10 free throws, what is the probability that he
makes at least 2 of them?

Answer. If X ∼ bin(10, .6) then

P (X ≥ 2) = 1− P (X = 0)− P (X = 1)

= 1−
(

10
0

)
(.6)0 (.4)10 −

(
10
1

)
(.6)1 (.4)9

= .998.

6.2.2. The Poisson Distribution. Here are some examples that usually obey Poisson
distribution and so can be modeled as Poisson r.v.:

(1) The number of misprints on a random page of a book.
(2) The number of of people in community that survive to age 100.
(3) The number of telephone numbers that are dialed in an average day.
(4) The number of customers entering post office on an average day.

All of these are Poisson for the same reason. Each event has a low probability and the number
of trials is high. For example, the probability of a misprint is small and the number of words
in a page is usually a relatively large number compared to the number of misprints. Here
we are using the fact that the Poisson distribution approximates the binomial distribution.

Example 6.5: Levi receives an average of two texts every 3 minutes. If we assume that
the number of texts is Poisson distributed, what is the probability that he receives five or
more texts in a 9-minute period?

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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Answer. Let X be the number of texts in a 9−minute period. Then λ = 3 · 2 = 6 and
P (X ≥ 5) = 1− P (X ≤ 4)

= 1−
4∑

n=0

6ne−6

n!

= 1− .285 = .715.

Example 6.6: LetX1, ..., Xk be independent Poisson r.v., each with expectation λ1. What
is the distribution of the r.v. Y = X1 + ...+Xk?

Answer. The distribution of Y is Poisson with expectation λ = kλ1. To show this, we
consider Proposition 6.1 where, in two different ways, we sum n = mk Bernoulli r.v. with
parameter pn = kλ1/n = λ1/m = λ/n. If we sum them all together, the limit as n → ∞
gives us a Poisson distribution with expectation lim

n→∞
npn = λ. However, we can separate the

same n = mk Bernoulli r.v. in k groups, each group having m Bernoulli r.v. Then the limit
gives us the distribution of X1 + ...+Xk.

Example 6.7: LetX1, . . . , Xk are independent Poisson r.v., each with expectation λ1, . . . , λk,
respectively. What is the distribution of the r.v. Y = X1 + ...+Xk?

Answer. The distribution of Y is Poisson with expectation λ = λ1 + ... + λk. To show this,
we again consider Proposition 6.1 with parameter pn = λ/n. If n is large, we can separate
these n Bernoulli r.v. in k groups, each having ni ≈ λin/λ Bernoulli r.v. The result follows
if lim
n→∞

ni/n = λi for each i = 1, ..., k.

This entire set-up, which is quite common, involves so called independent identically dis-
tributed Bernoulli random variables (i.i.d. Bernoulli r.v.).

Example 6.8: Can we use binomial approximation to find the mean and the variance of
a Poisson r.v.?

Answer. Yes, and this is really simple. Recall again from Proposition 6.1 that we can
approximate Poisson Y with parameter λ by binomial r.v. with parameters (n, pn = λ/n).
Each such binomial random variable is a sum on n independent Bernoulli random variables
with parameter pn. Therefore

EY = lim
n→∞

npn = lim
n→∞

n
λ

n
= λ

Var(Y ) = lim
n→∞

npn(1− pn) = lim
n→∞

n
λ

n

(
1− λ

n

)
= λ
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6.2.3. Table of distributions. The following table summarizes the discrete distribu-
tions we have seen in this chapter. Here N stands for the set of positive integers, and
N0 = N ∪ {0} is the set of nonnegative integers.

Name Abbrev. Parameters p.m.f. (k ∈ N0) E[X] Var(X)

Bernoulli Ber(p) p ∈ [0, 1]
(

1
k

)
pk(1− p)1−k p p(1− p)

Binomial bin(n, p) n ∈ N
p ∈ [0, 1]

(
n
k

)
pk(1− p)n−k np np(1− p)

Poisson Pois(λ) λ > 0 e−λ λ
k

k!
λ λ

Geometric Geo(p) p ∈ (0, 1)

{
(1− p)k−1p, for k ≥ 1,

0, else.
1
p

1−p
p2

Negative
binomial

NBin(r, p) r ∈ N
p ∈ (0, 1)

{(
k−1
r−1

)
pr(1− p)k−r, if k ≥ r,

0, else.
r
p

r(1−p)
p2

Hyper-
geometric

Hyp(N,m, n) N ∈ N0

n,m ∈ N0

(m
k)(N−m

n−k )
(N
n)

nm
N

nm(N−n)
N(N−1)

(1−m
N

)
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6.3. Exercises

Exercise 6.1: A UConn student claims that she can distinguish Dairy Bar ice cream from
Friendly’s ice cream. As a test, she is given ten samples of ice cream (each sample is either
from the Dairy Bar or Friendly’s) and asked to identify each one. She is right eight times.
What is the probability that she would be right exactly eight times if she guessed randomly
for each sample?

Exercise 6.2: A Pharmaceutical company conducted a study on a new drug that is sup-
posed to treat patients suffering from a certain disease. The study concluded that the drug
did not help 25% of those who participated in the study. What is the probability that of 6
randomly selected patients, 4 will recover?

Exercise 6.3: 20% of all students are left-handed. A class of size 20 meets in a room with
18 right-handed desks and 5 left-handed desks. What is the probability that every student
will have a suitable desk?

Exercise 6.4: A ball is drawn from an urn containing 4 blue and 5 red balls. After the
ball is drawn, it is replaced and another ball is drawn. Suppose this process is done 7 times.

(a) What is the probability that exactly 2 red balls were drawn in the 7 draws?
(b) What is the probability that at least 3 blue balls were drawn in the 7 draws?

Exercise 6.5: The expected number of typos on a page of the new Harry Potter book is
.2. What is the probability that the next page you read contains

(a) 0 typos?
(b) 2 or more typos?
(c) Explain what assumptions you used.

Exercise 6.6: The monthly average number of car crashes in Storrs, CT is 3.5. What is
the probability that there will be

(a) at least 2 accidents in the next month?
(b) at most 1 accident in the next month?
(c) Explain what assumptions you used.

Exercise 6.7: Suppose that, some time in a distant future, the average number of bur-
glaries in New York City in a week is 2.2. Approximate the probability that there will
be

(a) no burglaries in the next week;
(b) at least 2 burglaries in the next week.

Exercise 6.8: The number of accidents per working week in a particular shipyard is Poisson
distributed with mean 0.5. Find the probability that:

(a) In a particular week there will be at least 2 accidents.
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(b) In a particular two week period there will be exactly 5 accidents.
(c) In a particular month (i.e. 4 week period) there will be exactly 2 accidents.

Exercise 6.9: Jennifer is baking cookies. She mixes 400 raisins and 600 chocolate chips
into her cookie dough and ends up with 500 cookies.

(a) Find the probability that a randomly picked cookie will have three raisins in it.
(b) Find the probability that a randomly picked cookie will have at least one chocolate chip

in it.
(c) Find the probability that a randomly picked cookie will have no more than two bits in

it (a bit is either a raisin or a chocolate chip).

Exercise 6.10: A roulette wheel has 38 numbers on it: the numbers 0 through 36 and a
00. Suppose that Lauren always bets that the outcome will be a number between 1 and 18
(including 1 and 18).

(a) What is the probability that Lauren will lose her first 6 bets.
(b) What is the probability that Lauren will first win on her sixth bet?

Exercise 6.11: In the US, albinism occurs in about one in 17,000 births. Estimate the
probabilities no albino person, of at least one, or more than one albino at a football game with
5,000 attendants. Use the Poisson approximation to the binomial to estimate the probability.

Exercise 6.12: An egg carton contains 20 eggs, of which 3 have a double yolk. To make a
pancake, 5 eggs from the carton are picked at random. What is the probability that at least
2 of them have a double yolk?

Exercise 6.13: Around 30,000 couples married this year in CT. Approximate the proba-
bility that at least in one of these couples

(a) both partners have birthday on January 1st.
(b) both partners celebrate birthday in the same month.

Exercise 6.14: A telecommunications company has discovered that users are three times
as likely to make two-minute calls as to make four-minute calls. The length of a typical
call (in minutes) has a Poisson distribution. Calculate the expected length (in minutes) of a
typical call.
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6.4. Selected solutions

Solution to Exercise 6.1: This should be modeled using a binomial random variable
X, since there is a sequence of trials with the same probability of success in each one. If
she guesses randomly for each sample, the probability that she will be right each time is 1

2
.

Therefore,

P (X = 8) =

(
10

8

)(
1

2

)8(
1

2

)2

=
45

210
.

Solution to Exercise 6.2:
(

6
4

)
(.75)4 (.25)2

Solution to Exercise 6.3: For each student to have the kind of desk he or she prefers, there
must be no more than 18 right-handed students and no more than 5 left-handed students, so
the number of left-handed students must be between 2 and 5 (inclusive). This means that
we want the probability that there will be 2, 3, 4, or 5 left-handed students. We use the
binomial distribution and get

5∑
i=2

 20

i

(1

5

)i(
4

5

)20−i

.

Solution to Exercise 6.4(A):

 7

2

(5

9

)2(
4

9

)5

Solution to Exercise 6.4(B): P (X ≥ 3) = 1 − P (X ≤ 2) = 1 −

 7

0

(4

9

)0(
5

9

)7

−

 7

1

(4

9

)1(
5

9

)6

−

 7

2

(4

9

)2(
5

9

)5

Solution to Exercise 6.5(A): e−.2

Solution to Exercise 6.5(B): 1− e−.2 − .2e−.2 = 1− 1.2e−.2.

Solution to Exercise 6.5(C): Since each word has a small probability of being a typo, the
number of typos should be approximately Poisson distributed.

Solution to Exercise 6.6(A): 1− e−3.5 − 3.5e−3.5 = 1− 4.5e−3.5

Solution to Exercise 6.6(B): 4.5e−3.5

Solution to Exercise 6.6(C): Since each accident has a small probability it seems reason-
able to suppose that the number of car accidents is approximately Poisson distributed.
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Solution to Exercise 6.7(A): e−2.2

Solution to Exercise 6.7(B): 1− e−2.2 − 2.2e−2.2 = 1− 3.2e−2.2.

Solution to Exercise 6.8(A):We have P (X ≥ 2) = 1−P (X ≤ 1) = 1−e.5 (−.5)0

0!
−e.5 (−.5)1

1!
.

Solution to Exercise 6.8(B): In two weeks the average number of accidents will be λ =

.5 + .5 = 1. Then P (X = 5) = e−1 15

5!
.

Solution to Exercise 6.8(C): In a 4 week period the average number of accidents will be
λ = 4 · (.5) = 2. Then P (X = 2) = e−2 22

2!
.

Solution to Exercise 6.9(A): This calls for a Poisson random variable R. The average
number of raisins per cookie is .8, so we take this as our λ . We are asking for P(R = 3),
which is e−.8 (.8)3

3!
≈ .0383.

Solution to Exercise 6.9(B): This calls for a Poisson random variable C. The average
number of chocolate chips per cookie is 1.2, so we take this as our λ. We are asking for
P (C ≥ 1), which is 1− P (C = 0) = 1− e−1.2 (1.2)0

0!
≈ .6988.

Solution to Exercise 6.9(C): This calls for a Poisson random variable B. The average
number of bits per cookie is .8 + 1.2 = 2, so we take this as our λ. We are asking for
P (B ≤ 2), which is P (B = 0) + P (B = 1) + P (B = 2) = e−2 20

0!
+ e−2 21

1!
+ e−2 22

2!
≈ .6767.

Solution to Exercise 6.10(A):
(
1− 18

38

)6

Solution to Exercise 6.10(B):
(
1− 18

38

)5 18
38

Solution to Exercise 6.11 Let X denote the number of albinos at the game. We have that
X ∼ bin(5000, p) with p = 1/17000 ≈ 0.00029. The binomial distribution gives us

P(X = 0) =

(
16999

17000

)5000

≈ 0.745 P(X > 1) = 1− P(X = 0) = 1−
(

16999

17000

)5000

≈ 0.255

P(X > 1) = P(X > 1)− P(X = 1) =

= 1−
(

16999

17000

)5000

−

5000

1

(16999

17000

)4999(
1

17000

)1

≈ 0.035633

Approximating the distribution of X by a Poisson with parameter λ = 5000
17000

=
5

17
gives

P(Y = 0) = exp

(
− 5

17

)
≈ 0.745 P(Y > 1) = 1− P(Y = 0) = 1− exp

(
− 5

17

)
≈ 0.255

P(Y > 1) = P(Y > 1)− P(Y = 1) = 1− exp

(
− 5

17

)
− exp

(
− 5

17

)
5

17
≈ 0.035638
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Solution to Exercise 6.12: Let X be the random variable that denotes the number of
eggs with double yolk in the set of chosen 5. Then, X ∼ Hyp(20, 3, 5) and we have that

P(X ≥ 2) = P(X = 2) + P(X = 3) =

(
3
2

)
· 17(

20
5

) +
1(
20
5

) .
Solution to Exercise 6.13: We will use Poisson approximation.

(a) The probability that both partners have birthday on January 1st is p = 1
3652

. If X
denotes the number of married couples where this is the case, we can approximate the
distribution of X by a Poisson with parameter λ = 30, 000 · 365−2 ≈ 0.2251. Hence,
P(X ≥ 1) = 1− P(X = 0) = 1− e−0.2251.

(b) In this case, the probability of both partners celebrating birthday in the same month
is 1/12 and therefore we approximate the distribution by a Poisson with parameter
λ = 30, 000/12 = 2500. Thus, P(X ≥ 1) = 1− P(X = 0) = 1− e−2500.

Solution to Exercise 6.14: Let X denote the duration (in minutes) of a call. By assump-
tion, X ∼ Pois(λ) for some parameter λ > 0, so that the expected duration of a call is
E[X] = λ. In addition, we know that P(X = 2) = 3P(X = 4), which means

e−λ
λ2

2!
= 3e−λ

λ4

4!
.

From here we deduce that λ2 = 4 and hence E[X] = λ = 2.
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Continuous Random Variables





CHAPTER 7

Continuous distributions

7.1. Introduction

A r.v. X is said to have a continuous distribution if there exists a nonnegative function f
such that

P(a ≤ X ≤ b) =

ˆ b

a

f(x)dx

for every a and b. (More precisely, such an X is said to have an absolutely continuous
distribution.) f is called the density function for X. Note

´∞
−∞ f(x)dx = P(−∞ < X <

∞) = 1. In particular, P(X = a) =
´ a
a
f(x)dx = 0 for every a.

Example 7.1: Suppose we are given f(x) = c/x3 for x ≥ 1. Since
´∞
−∞ f(x)dx = 1 and

c

ˆ ∞
−∞

f(x)dx = c

ˆ ∞
1

1

x3
dx =

c

2
,

we have c = 2.

Define F (y) = P(−∞ < X ≤ y) =
´ y
−∞ f(x)dx. F is called the distribution function of

X. We can define F for any random variable, not just continuous ones, by setting F (y) =
P(X ≤ y). In the case of discrete random variables, this is not particularly useful, although
it does serve to unify discrete and continuous random variables. In the continuous case, the
fundamental theorem of calculus tells us, provided f satisfies some conditions, that

f(y) = F ′(y).

By analogy with the discrete case, we define the expectation by

EX =

ˆ ∞
−∞

xf(x)dx.

In the example above,

EX =

ˆ ∞
1

x
2

x3
dx = 2

ˆ ∞
1

x−2dx = 2.

We give another definition of the expectation in the continuous case. First suppose X is
nonnegative. Define Xn(ω) to be k/2n if k/2n ≤ X(ω) < (k + 1)/2n. We are approximating
X from below by the largest multiple of 2−n. Each Xn is discrete and the Xn increase to X.
We define EX = limn→∞ EXn.

81
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Let us argue that this agrees with the first definition in this case. We have

EXn =
∑
k/2n

k

2n
P(Xn = k/2n)

=
∑
k/2n

k

2n
P(k/2n ≤ X < (k + 1)/2n)

=
∑ k

2n

ˆ (k+1)/2n

k/2n
f(x)dx

=
∑ ˆ (k+1)/2n

k/2n

k

2n
f(x)dx.

If x ∈ [k/2n, (k+1)/2n), then x differs from k/2n by at most 1/2n. So the last integral differs
from ∑ ˆ (k+1)/2n

k/2n
xf(x)dx

by at most
∑

(1/2n)P(k/2n ≤ X < (k + 1)/2n) ≤ 1/2n, which goes to 0 as n→∞. On the
other hand, ∑ ˆ (k+1)/2n

k/2n
xf(x)dx =

ˆ M

0

xf(x)dx,

which is how we defined the expectation of X.

We will not prove the following, but it is an interesting exercise: if Xm is any sequence of
discrete random variables that increase up to X, then limm→∞ EXm will have the same value
EX.

To show linearity, if X and Y are bounded positive random variables, then take Xm discrete
increasing up to X and Ym discrete increasing up to Y . Then Xm + Ym is discrete and
increases up to X + Y , so we have

E (X + Y ) = lim
m→∞

E (Xm + Ym)

= lim
m→∞

EXm + lim
m→∞

EYm = EX + EY.

If X is not necessarily positive, we have a similar definition; we will not do the details. This
second definition of expectation is mostly useful for theoretical purposes and much less so
for calculations.

Similarly to the discrete case, we have

Proposition 7.1: E g(X) =
´
g(x)f(x)dx.

As in the discrete case,
VarX = E [X − EX]2.

As an example of these calculations, let us look at the uniform distribution. We say that a
random variable X has a uniform distribution on [a, b] if fX(x) = 1

b−a if a ≤ x ≤ b and 0
otherwise.
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To calculate the expectation of X,

EX =

ˆ ∞
−∞

xfX(x)dx =

ˆ b

a

x
1

b− a
dx

=
1

b− a

ˆ b

a

x dx

=
1

b− a

(b2

2
− a2

2

)
=
a+ b

2
.

This is what one would expect. To calculate the variance, we first calculate

EX2 =

ˆ ∞
−∞

x2fX(x)dx =

ˆ b

a

x2 1

b− a
dx =

a2 + ab+ b2

3
.

We then do some algebra to obtain

VarX = EX2 − (EX)2 =
(b− a)2

12
.
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7.2. Further examples and applications

Example 7.2: Suppose X has the following p.d.f.

f(x) =

{
2
x3

x ≥ 1

0 x ≤ 1.

Find the c.d.f of X, that is, find FX(x). Use this c.d.f to find P (3 ≤ X ≤ 4).

Answer. We have FX(x) = 0 if x 6 1 and will need to compute

FX(x) = P (X ≤ x) =

ˆ x

1

2

y3
dy = 1− 1

x2

when x > 1. We can use this formula to find the following probability:

P (3 ≤ X ≤ 4) = P (X ≤ 4)− P (X < 3) = FX(4)− FX(3) =

(
1− 1

42

)
−
(

1− 1

32

)
=

7

144
.

Example 7.3: Suppose X has density

f(x) =

{
2x 0 ≤ x ≤ 1

0 otherwise
.

Find EX.

Answer. We have that

E [X] =

ˆ
xf(x)dx =

ˆ 1

0

x · 2x dx =
2

3
.

Example 7.4: The density of X is given by

f(x) =

{
1
2

if 0 ≤ x ≤ 2

0 otherwise
.

Find E
[
eX
]
.

Answer. Using proposition 7.1 with g(x) = ex we have

EeX =

ˆ 2

0

ex · 1

2
dx =

1

2

[
e2 − 1

]
.

Example 7.5: Suppose X has density

f(x) =

{
2x 0 ≤ x ≤ 1

0 otherwise
.

Find Var(X).

Answer. From Example 7.3 we found E [X] = 2
3
. Now

E
[
X2
]

=

ˆ 1

0

x2 · 2xdx = 2

ˆ 1

0

x3dx =
1

2
.
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Thus

Var(X) =
1

2
−
(

2

3

)2

=
1

18
.

Example 7.6: Suppose X has density

f(x) =

{
ax+ b 0 ≤ x ≤ 1

0 otherwise
.

and that E [X2] = 1
6
. Find the values of a and b.

Answer. We need to use the fact that
´∞
−∞ f(x)dx = 1 and E [X2] = 1

6
. The first one gives

us,

1 =

ˆ 1

0

(ax+ b) dx =
a

2
+ b

and the second one give us
1

6
=

ˆ 1

0

x2 (ax+ b) dx =
a

4
+
b

3
.

Solving these equations gives us
a = −2, and b = 2.
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7.3. Exercises

Exercise 7.1: Let X be a random variable with probability density function

f(x) =

{
cx (5− x) 0 ≤ x ≤ 5,

0 otherwise.

(a) What is the value of c?
(b) What is the cumulative distribution function of X? That is, find FX(x) = P (X ≤ x).
(c) Use your answer in part (b) to find P (2 ≤ X ≤ 3).
(d) What is E [X]?
(e) What is Var(X)?

Exercise 7.2: UConn students have designed the new U-phone. They have determined
that the lifetime of a U-Phone is given by the random variable X (measured in hours), with
probability density function

f(x) =

{
10
x2

x ≥ 10,

0 x ≤ 10.

(a) Find the probability that the u-phone will last more than 20 hours.
(b) What is the cumulative distribution function of X? That is, find FX(x) = P (X ≤ x).
(c) Use part (b) to help you find P (X ≥ 35)?

Exercise 7.3: Suppose the random variable X has a density function

f(x) =

{
2
x2

x > 2,

0 x ≤ 2.

Compute E [X].

Exercise 7.4: An insurance company insures a large number of homes. The insured value,
X, of a randomly selected home is assumed to follow a distribution with density function

f(x) =

{
3
x4

x > 1,

0 otherwise.

Given that a randomly selected home is insured for at least 1.5, calculate the probability
that it is insured for less than 2.

Exercise 7.5: The density function of X is given by

f(x) =

{
a+ bx2 0 ≤ x ≤ 1,

0 otherwise.

If E [X] = 7
10
, find the values of a and b.
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Exercise 7.6: Let X be a random variable with density function

f(x) =

{
1

a−1
1 < x < a,

0 otherwise.

Suppose that E [X] = 6Var(X). Find the value of a.

Exercise 7.7: Suppose you order a pizza from your favorite pizzaria at 7:00 pm, knowing
that the time it takes for your pizza to be ready is uniformly distributed between 7:00 pm
and 7:30 pm.

(a) What is the probability that you will have to wait longer than 10 minutes for your
pizza?

(b) If at 7:15pm, the pizza has not yet arrived, what is the probability that you will have
to wait at least an additional 10 minutes?

Exercise 7.8: The grade of deteriorationX of a machine part has a continuous distribution
on the interval (0, 10) with probability density function fX(x), where fX(x) is proportional
to x

5
on the interval. The reparation costs of this part are modeled by a random variable Y

that is given by Y = 3X2. Compute the expected cost of reparation of the machine part.

Exercise 7.9: You arrive at a bus stop at 10 : 05 am, and the bus arrives at some (random)
time uniformly distributed between 10 : 00 and 10 : 20. Given that when you arrive today to
the station the bus is not there yet (you are lucky today), what is the probability that you
have to wait more than 4 minutes? Hint: the event ‘today you are lucky’ can be expressed
as (X > 5), where X denotes the arrival time of the bus at the station (in minutes past
10 : 00 a.m.).
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7.4. Selected solutions

Solution to Exercise 7.1(A): We must have that
´∞
−∞ f(x)dx = 1, thus

1 =

ˆ 5

0

cx(5− x)dx =

[
c

(
5x2

2
− x3

3

)]5

0

and so we must have that c = 6/125.

Solution to Exercise 7.1(B): We have that

FX(x) = P (X ≤ x) =

ˆ x

−∞
f(y)dy

=

ˆ x

0

6

125
y (5− y) dx =

6

125

[(
5y2

2
− y3

3

)]x
0

=
6

125

(
5x2

2
− x3

3

)
.

Solution to Exercise 7.1(C): We have

P (2 ≤ X ≤ 3) = P (X ≤ 3)− P (X < 2)

=
6

125

(
5 · 32

2
− 33

3

)
− 6

125

(
5 · 22

2
− 23

3

)
= .296.

Solution to Exercise 7.1(D): We have

E [X] =

ˆ ∞
−∞

xfX(x)dx =

ˆ 5

0

x · 6

125
x(5− x)dx

= 2.5.

Solution to Exercise 7.1(E): We need to first compute

E
[
X2
]

=

ˆ ∞
−∞

x2fX(x)dx =

ˆ 5

0

x2 · 6

125
x(5− x)dx

= 7.5.

Then
Var(X) = E

[
X2
]
− (E [X])2 = 7.5− (2.5)2 = 1.25.

Solution to Exercise 7.2(A): We haveˆ ∞
20

10

x2
dx =

1

2
.

Solution to Exercise 7.2(B): We have

F (x) = P(X ≤ x) =

ˆ x

10

10

y2
dy = 1− 10

x

for x > 10, and F (x) = 0 for x < 10.
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Solution to Exercise 7.2(C): We have

P (X ≥ 35) = 1− P (X < 35) = 1− FX(35)

= 1−
(

1− 10

35

)
=

10

35
.

Solution to Exercise 7.5: We need to use the fact that
´∞
−∞ f(x)dx = 1 and E [X] = 7

10
.

The first one gives us,

1 =

ˆ 1

0

(
a+ bx2

)
dx = a+

b

3

and the second one give us

7

10
=

ˆ 1

0

x
(
a+ bx2

)
dx =

a

2
+
b

4
.

Solving these equations gives us

a =
1

5
, and b =

12

5
.

Solution to Exercise 7.6: Note that

EX =

ˆ a

1

x

a− 1
dx =

1

2
a+

1

2
.

Also
Var(X) = EX2 − (EX)2

then we need

EX2 =

ˆ a

1

x2

a− 1
dx =

1

3
a2 +

1

3
a+

1

3
.

Then

V ar(X) =

(
1

3
a2 +

1

3
a+

1

3

)
−
(

1

2
a+

1

2

)2

=
1

12
a2 − 1

6
a+

1

12
.

Then, using E [X] = 6Var(X), we simplify and get 1
2
a2 − 3

2
a = 0, which gives us a = 3.

Another way to solve this problem is to note that, for the uniform distribution on [a, b],
the mean is a+b

2
and the variance is (a−b)2

12
. This gives us an equation 6 (a−1)2

12
= a+1

2
. Hence

(a− 1)2 = a+ 1, which implies a = 3.

Solution to Exercise 7.7(A): Note that X is uniformly distributed over (0, 30). Then

P(X > 10) =
2

3
.

Solution to Exercise 7.7(B): Note that X is uniformly distributed over (0, 30). Then

P(X > 25 | X > 15) =
P (X > 25)

P(X > 15)
=

5/30

15/30
= 1/3.
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Solution to Exercise 7.8: First of all we need to find the pdf of X. So far we know that

f(x) =

{
cx
5

0 ≤ x ≤ 10,

0 otherwise.

Since
´ 10

0
cx

5
dx = 10c, we have c = 1

10
. Now, applying Proposition 7.1,

E[Y ] =

ˆ 10

0

3

50
x3dx = 150.



CHAPTER 8

Normal distribution

8.1. Introduction

A r.v. is a standard normal (written N (0, 1)) if it has density
1√
2π
e−x

2/2.

A synonym for normal is Gaussian. The first thing to do is show that this is a density. Let
I =
´∞

0
e−x

2/2dx. Then

I2 =

ˆ ∞
0

ˆ ∞
0

e−x
2/2e−y

2/2dx dy.

Changing to polar coordinates,

I2 =

ˆ π/2

0

ˆ ∞
0

re−r
2/2dr = π/2.

So I =
√
π/2, hence

´∞
−∞ e

−x2/2dx =
√

2π as it should.

Note ˆ
xe−x

2/2dx = 0

by symmetry, so EZ = 0. For the variance of Z, we use integration by parts:

EZ2 =
1√
2π

ˆ
x2e−x

2/2dx =
1√
2π

ˆ
x · xe−x2/2dx.

The integral is equal to

−xe−x2/2
]∞
−∞

+

ˆ
e−x

2/2dx =
√

2π.

Therefore VarZ = EZ2 = 1.

We say X is a N (µ, σ2) if X = σZ + µ, where Z is a N (0, 1). We see that

FX(x) = P(X ≤ x) = P(µ+ σZ ≤ x)

= P(Z ≤ (x− µ)/σ) = FZ((x− µ)/σ)

if σ > 0. (A similar calculation holds if σ < 0.) Then by the chain rule X has density

fX(x) = F ′X(x) = F ′Z((x− µ)/σ) =
1

σ
fZ((x− µ)/σ).

This is equal to
1√
2πσ

e−(x−µ)2/2σ2

.

91
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EX = µ+ EZ and VarX = σ2VarZ, so

EX = µ, VarX = σ2.

If X is N (µ, σ2) and Y = aX + b, then Y = a(µ + σZ) + b = (aµ + b) + (aσ)Z, or Y is
N (aµ+ b, a2σ2). In particular, if X is N (µ, σ2) and Z = (X − µ)/σ, then Z is N (0, 1).

The distribution function of a standard N (0, 1) is often denoted Φ(x), so that

Φ(x) =
1√
2π

ˆ x

−∞
e−y

2/2dy.

Tables of Φ(x) are often given only for x > 0. One can use the symmetry of the density
function to see that

Φ(−x) = 1− Φ(x);

this follows from

Φ(−x) = P(Z ≤ −x) =

ˆ −x
−∞

1√
2π
e−y

2/2dy

=

ˆ ∞
x

1√
2π
e−y

2/2dy = P(Z ≥ x)

= 1− P(Z < x) = 1− Φ(x).

Example 8.1: Find P(1 ≤ X ≤ 4) if X is N (2, 25).

Answer. Write X = 2 + 5Z. So

P(1 ≤ X ≤ 4) = P(1 ≤ 2 + 5Z ≤ 4)

= P(−1 ≤ 5Z ≤ 2) = P(−0.2 ≤ Z ≤ .4)

= P(Z ≤ .4)− P(Z ≤ −0.2)

= Φ(0.4)− Φ(−0.2) = .6554− [1− Φ(0.2)]

= .6554− [1− .5793].

Example 8.2: Find c such that P(|Z| ≥ c) = .05.

Answer. By symmetry we want c such that P(Z ≥ c) = .025 or Φ(c) = P(Z ≤ c) = .975.
From the table we see c = 1.96 ≈ 2. This is the origin of the idea that the 95% significance
level is ±2 standard deviations from the mean.

Proposition 8.1: We have the following bound. For x > 0

P(Z ≥ x) = 1− Φ(x) ≤ 1√
2π

1

x
e−x

2/2.
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Proof. If y ≥ x, then y/x ≥ 1, and then

P(Z ≥ x) =
1√
2π

ˆ ∞
x

e−y
2/2 dy

≤ 1√
2π

ˆ ∞
x

y

x
e−y

2/2 dy

=
1√
2π

1

x
e−x

2/2.

This is a good estimate when x ≥ 3.5.

In particular, for x large,
P(Z ≥ x) = 1− Φ(x) ≤ e−x

2/2.
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8.2. Further examples and applications

Example 8.3: Suppose X is normal with mean 6. If P (X > 16) = .0228, then what is the
standard deviation of X?

Answer. We apply the fact that X−µ
σ

= Z is N (0, 1) and get

P (X > 16) = .0228 ⇐⇒ P
(
X − 6

σ
>

16− 6

σ

)
= .0228

⇐⇒ P
(
Z >

10

σ

)
= .0228

⇐⇒ 1− P
(
Z ≤ 10

σ

)
= .0228

⇐⇒ 1− Φ

(
10

σ

)
= .0228

⇐⇒ Φ

(
10

σ

)
= .9772.

Using the standard normal table we see that Φ (2) = .9772, thus we must have that

2 =
10

σ
and hence σ = 5.

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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8.3. Exercises

Exercise 8.1: Suppose X is a normally distributed random variable with µ = 10 and
σ2 = 36. Find (a) P (X > 5), (b) P (4 < X < 16), (c) P (X < 8).

Exercise 8.2: The height of maple trees at age 10 are estimated to be normally distributed
with mean 200 cm and variance 64 cm. What is the probability a maple tree at age 10 grows
more than 210cm?

Exercise 8.3: The peak temperature T , in degrees Fahrenheit, on a July day in Antarctica
is a Normal random variable with a variance of 225. With probability .5, the temperature
T exceeds 10 degrees.

(a) What is P(T > 32), the probability the temperature is above freezing?
(b) What is P (T < 0)?

Exercise 8.4: The salaries of UConn professors is approximately normally distributed.
Suppose you know that 33 percent of professors earn less than $80,000. Also 33 percent earn
more than $120,000.

(a) What is the probability that a UConn professor makes more than $100,000?
(b) What is the probability that a UConn professor makes between $70,000 and $80,000?

Exercise 8.5: Suppose X is a normal random variable with mean 5. If P (X > 0) = .8888,
approximately what is V ar (X)?

Exercise 8.6: The shoe size of a UConn basketball player is normally distributed with
mean 12 inches and variance 4 inches. Ten percent of all UConn basketball players have a
shoe size greater than c inches. Find the value of c.

Exercise 8.7: The length of the forearm of a UConn football player is normally distributed
with mean 12 inches. If ten percent of the football team players have a forearm whose length
is greater than 12.5 inches, find out the approximate standard deviation of the forearm length
of a UConn football player.

Exercise 8.8: Companies C and A earn each an annual profit that is normally distributed
with the same positive mean µ. The standard deviation of C’s annual profit is one third of
its mean. In a certain year, the probability that A makes a loss (i.e. a negative profit) is 0.8
times the probability that C does. Assuming that A’s annual profit has a standard deviation
of 10, compute (approximately) the standard deviation of C’s annual profit.

Exercise 8.9: Let Z ∈ N (0, 1), that is, a standard normal random variable. Find
probability density for X = Z2. Hint: first find the (cumulative) distribution function
FX(x) = P (X 6 x) in terms of Φ(x) = FZ(x). Then use the fact that the probability
density function can be found by fX(x) = F ′X(x), and use the known density function for Z.
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8.4. Selected solutions

Solution to Exercise 8.1(A):

P (X > 5) = P
(
Z >

5− 10

6

)
= P (Z > −.8333)

= 1− P (Z ≤ −.8333) = 1− Φ (−.8333)

= 1− (1− Φ (.8333)) = Φ (.8333) = .7977

Solution to Exercise 8.1(B): 2Φ(1)− 1 = .6827

Solution to Exercise 8.1(C): 1− Φ(.3333) = .3695

Solution to Exercise 8.2: We have µ = 200 and σ =
√

64 = 8. Then

P (X > 210) = P
(
Z >

210− 200

8

)
= P (Z > 1.25)

= 1− Φ(1.25) = .1056.

Solution to Exercise 8.3(A): We have σ =
√

225 = 15. Since P (X > 10) = .5 then we
must have that µ = 10 since the pdf of the normal distribution is symmetric. Then

P(T > 32) = P
(
Z >

32− 10

15

)
= 1− Φ (1.47) = .0708.

Solution to Exercise 8.3(B): We have P(T < 0) = Φ (−.67) = 1− Φ(.67) = .2514.

Solution to Exercise 8.4(A): First we need to figure out what µ and σ are. Note that

P (X ≤ 80, 000) = .33 ⇐⇒ P
(
Z <

80, 000− µ
σ

)
= .33

⇐⇒ Φ

(
80, 000− µ

σ

)
= .33

and since Φ (.44) = .67 then Φ (−.44) = .33. Then we must have
80, 000− µ

σ
= −.44.

Similarly, since

P (X > 120, 000) = .33 ⇐⇒ 1− P (X ≤ 120, 000) = .33

⇐⇒ 1− Φ

(
120, 000− µ

σ

)
= .33

⇐⇒ Φ

(
120, 000− µ

σ

)
= .67

Now again since Φ (.44) = .67 then
120, 000− µ

σ
= .44.
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Solving the equations
80, 000− µ

σ
= −.44 and

120, 000− µ
σ

= .44,

simultaneously we have that

µ = 100, 000 and σ ≈ 45, 454.5.

Then
P (X > 100, 000) = .5.

Solution to Exercise 8.4(B): We have

P (70, 000 < X < 80, 000) ≈ .0753.

Solution to Exercise 8.5: Since P (X > 0) = .8888, then

P (X > 0) = .8888 ⇐⇒ P
(
Z >

0− 5

σ

)
= .8888

⇐⇒ 1− P
(
Z ≤ − 5

σ

)
= .8888

⇐⇒ 1− Φ

(
− 5

σ

)
= .8888

⇐⇒ 1−
(

1− Φ

(
5

σ

))
= .8888

⇐⇒ Φ

(
5

σ

)
= .8888.

Using the table we see that Φ (1.22) = .8888, thus we must have that
5

σ
= 1.22

and solving this gets us σ = 4.098, hence σ2 ≈ 16.8.

Solution to Exercise 8.6: Note that

P (X > c) = .10 ⇐⇒ P
(
Z >

c− 12

2

)
= .10

⇐⇒ 1− P
(
Z ≤ c− 12

2

)
= .10

⇐⇒ P
(
Z ≤ c− 12

2

)
= .9

⇐⇒ Φ

(
c− 12

2

)
= .9

Using the table we see that Φ (1.28) = .90, thus we must have that
c− 12

2
= 1.28

and solving this gets us c = 14.56.
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Solution to Exercise 8.7: Let X denote the forearm length of a UConn football player
and let σ denote its standard deviation. From the problem we know that

P(X > 12.5) = P
(X − 12

σ
>

0.5

σ

)
= 1− Φ

(0.5

σ

)
= 0.1

From the table we get 0.5
σ
≈ 0.8159 hence σ ≈ 0.4079.

Solution to Exercise 8.8: Let A and C denote the respective annual profits, and µ their
mean. Form the problem we know P(A < 0) = 0.8P(C < 0) and σA = µ/3. Since they are
normal distributed, Φ

(
−µ
10

)
= 0.8Φ(−3) which implies

Φ
( µ

10

)
= 0.2 + 0.8Φ(3) ≈ 0.998.

From the table we thus get µ/10 ≈ 2.88 and hence the standard deviation of C is µ/3 ≈ 9.6.
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Normal approximation to the binomial

9.1. Introduction

A special case of the central limit theorem is

Theorem 9.1: If Sn is a binomial with parameters n and p, then

P
(
a ≤ Sn − np√

np(1− p)
≤ b
)
→ P(a ≤ Z ≤ b),

as n→∞, where Z is a N (0, 1).

This approximation is good if np(1 − p) ≥ 10 and gets better the larger this quantity gets.
Note np is the same as ESn and np(1− p) is the same as VarSn. So the ratio is also equal
to (Sn − ESn)/

√
VarSn, and this ratio has mean 0 and variance 1, the same as a standard

N (0, 1).

Note that here p stays fixed as n→∞, unlike the case of the Poisson approximation.

Example 9.1: Suppose a fair coin is tossed 100 times. What is the probability there will
be more than 60 heads?

Answer. np = 50 and
√
np(1− p) = 5. We have

P(Sn ≥ 60) = P((Sn − 50)/5 ≥ 2) ≈ P(Z ≥ 2) ≈ .0228.

Example 9.2: Suppose a die is rolled 180 times. What is the probability a 3 will be
showing more than 50 times?

Answer. Here p = 1
6
, so np = 30 and

√
np(1− p) = 5. Then P(Sn > 50) ≈ P(Z > 4), which

is less than e−42/2.

Example 9.3: Suppose a drug is supposed to be 75% effective. It is tested on 100 people.
What is the probability more than 70 people will be helped?

99
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Answer. Here Sn is the number of successes, n = 100, and p = .75. We have

P(Sn ≥ 70) = P((Sn − 75)/
√

300/16 ≥ −1.154)

≈ P(Z ≥ −1.154) ≈ .87.

(The last figure came from a table.)

When b− a is small, there is a correction that makes things more accurate, namely replace
a by a − 1

2
and b by b + 1

2
. This correction never hurts and is sometime necessary. For

example, in tossing a coin 100 times, there is positive probability that there are exactly 50
heads, while without the correction, the answer given by the normal approximation would
be 0.

Example 9.4: We toss a coin 100 times. What is the probability of getting 49, 50, or 51
heads?

Answer. We write P(49 ≤ Sn ≤ 51) = P(48.5 ≤ Sn ≤ 51.5) and then continue as above.
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9.2. Exercises

Exercise 9.1: Suppose that we roll 2 dice 180 times. Let E be the event that we roll two
fives no more than once.

(a) Find the exact probability of E.
(b) Approximate P(E) using the normal distribution.
(c) Approximate P(E) using the Poisson distribution.

Exercise 9.2: About 10% of the population is left-handed. Use the normal distribution
to approximate the probability that in a class of 150 students,

(a) at least 25 of them are left-handed.
(b) between 15 and 20 are left-handed.

Exercise 9.3: A teacher purchases a box with 50 markers of colors selected at random.
The probability that marker is black is 0.6, independent of all other markers. Knowing
that the probability of there being more than N black markers is greater than 0.2 and the
probability of there being more than N + 1 black markers is less than 0.2, use the normal
approximation to calculate N.
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9.3. Selected solutions

Solution to Exercise 9.1(A): The probability of rolling two ves in a particular roll is 1
36

,
so the probability that we roll two fives no more than once in 180 rolls is

p =

 180

0

(35

36

)180

+

 180

1

( 1

36

)(
35

36

)179

≈ .0386.

Solution to Exercise 9.1(B): We want the number of successes to be 0 or 1, so we want
P (0 ≤ S180 ≤ 1). Since the binomial is integer-valued, we apply the continuity correction and
calculate P (−.5 ≤ S180 ≤ 1.5)instead. We calculate that the expected value is µ = 180·p = 5

and the standard deviation σ =
√

180p(1− p) ≈ 2.205. Now, as always, we convert this
question to a question about the standard normal random variable Z,

P (−.5 ≤ S180 ≤ 1.5) = P
(
.5− 5

2.205
≤ Z ≤ 1.5− 5

2.205

)
= P (−2.49 < Z < −1.59)

= (1− Φ (1.59))− (1− Φ (2.49))

= (1− .9441)− (1− .9936) = .0495.

Solution to Exercise 9.1(C): We use λ = np = 5 (note that we calculated this already in
(b)!). Now we see that

P(E) ≈ e−5 50

0!
+ e−5 51

1!
≈ .0404.

Solution to Exercise 9.2: Let X denote the number of left-handed students in the class.
Since X ∼ bin(150, 0.1) using Theorem 9.1 we have

(a) P(X > 25) = P
(
X−15√

13.5
> 10√

13.5

)
≈ 1− Φ(2.72) ≈ 0.0032.

(b) P(15 ≤ X ≤ 20) = P(14.5 < X < 20.5) = Φ
(

5.5√
13.5

)
−Φ
(
−0.5√

13.5

)
≈ Φ(1.5)−1+Φ(0.14) ≈

0.4889.

Solution to Exercise 9.3: Let X denote the number of black markers. Since X ∼
bin(50, 0.6) we have

P(X > N) ≈ 1− Φ
(N − 30

2
√

3

)
> 0.2 and P(X > N + 1) ≈ 1− Φ

(N − 29

2
√

3

)
< 0.2.

From this we deduce that N ≤ 32.909 and N ≥ 31.944 so that N = 32.



CHAPTER 10

Some continuous distributions

10.1. Introduction

We look at some other continuous random variables besides normals.

Uniform distribution. Here f(x) = 1/(b − a) if a ≤ x ≤ b and 0 otherwise. To compute
expectations, EX = 1

b−a

´ b
a
x dx = (a+ b)/2.

Exponential distribution. An exponential with parameter λ has density f(x) = λe−λx if
x ≥ 0 and 0 otherwise. We have

P(X > a) =

ˆ ∞
a

λe−λxdx = e−λa

and we readily compute EX = 1/λ, VarX = 1/λ2. Examples where an exponential r.v. is
a good model is the length of a telephone call, the length of time before someone arrives at
a bank, the length of time before a light bulb burns out.

Exponentials are memory-less. This means that P(X > s+ t | X > t) = P(X > s), or given
that the light bulb has burned 5 hours, the probability it will burn 2 more hours is the same
as the probability a new light bulb will burn 2 hours. To prove this,

P(X > s+ t | X > t) =
P(X > s+ t)

P(X > t)

=
e−λ(s+t)

e−λt
= e−λs

= P(X > s).

Gamma distribution. A gamma distribution with parameters λ and t has density

f(x) =
λe−λx(λx)t−1

Γ(t)

if x ≥ 0 and 0 otherwise. Here Γ(t) =
´∞

0
e−yyt−1dt is the Gamma function, which interpo-

lates the factorial function.

An exponential is the time for something to occur. A gamma is the time for t events to
occur. A gamma with parameters 1

2
and n

2
is known as a χ2

n, a chi-squared r.v. with n
degrees of freedom. Gammas and chi-squared’s come up frequently in statistics.
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Another distribution that arises in statistics is the beta distribution :

f(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1,

where B(a, b) =
´ 1

0
xa−1(1− x)b−1.

Cauchy distribution. Here

f(x) =
1

π

1

1 + (x− θ)2
.

What is interesting about the Cauchy is that it does not have finite mean, that is, E |X| =∞.

Often it is important to be able to compute the density of Y = g(X). Let us give a
couple of examples.

If X is uniform on (0, 1] and Y = − logX, then Y > 0. If x > 0,
FY (x) = P(Y ≤ x) = P(− logX ≤ x)

= P(logX ≥ −x) = P(X ≥ e−x) = 1− P(X ≤ e−x)

= 1− FX(e−x).

Taking the derivative,

fY (x) =
d

dx
FY (x) = −fX(e−x)(−e−x),

using the chain rule. Since fX = 1, this gives fY (x) = e−x, or Y is exponential with
parameter 1.

For another example, suppose X is N (0, 1) and Y = X2. Then

FY (x) = P(Y ≤ x) = P(X2 ≤ x) = P(−
√
x ≤ X ≤

√
x)

= P(X ≤
√
x)− P(X ≤ −

√
x) = FX(

√
x)− FX(−

√
x).

Taking the derivative and using the chain rule,

fY (x) =
d

dx
FY (x) = fX(

√
x)
( 1

2
√
x

)
− fX(−

√
x)
(
− 1

2
√
x

)
.

Remembering that fX(t) = 1√
2π
e−t

2/2 and doing some algebra, we end up with

fY (x) =
1√
2π
x−1/2e−x/2,

which is a Gamma with parameters 1
2
and 1

2
. (This is also a χ2 with one degree of freedom.)

One more example. Suppose X is uniform on (−π/2, π/2) and Y = tanX. Then

FY (x) = P(X ≤ tan−1 x) = FX(tan−1 x),

and taking the derivative yields

fY (x) = fX(tan−1 x)
1

1 + x2
=

1

π

1

1 + x2
,

which is a Cauchy distribution.
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10.2. Further examples and applications

Example 10.1: Suppose that the length of a phone call in minutes is an exponential r.v
with average length 10 minutes.

(1) What’s probability of your phone call being more than 10 minutes?
Answer. Here λ = 1

10
thus

P(X > 10) = e−( 1
10)10 = e−1 ≈ .368.

(2) Between 10 and 20 minutes?
Answer. We have that

P(10 < X < 20) = F (20)− F (10) = e−1 − e−2 ≈ .233.

Example 10.2: Suppose the life of an Uphone has exponential distribution with mean life
of 4 years. Let X denote the life of an Uphone (or time until it dies). Given that the Uphone
has lasted 3 years, what is the probability that it will 5 more years.

Answer. Note that λ = 1
4
.

P (X > 5 + 3 | X > 3) =
P (X > 8)

P (X > 3)

=
e−

1
4
·8

e−
1
4
·3

= e−
1
4
·5

= P (X > 5) .

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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10.3. Exercises

Exercise 10.1: Suppose that the time required to replace a car’s windshield can be rep-
resented by an exponentially distributed random variable with parameter λ = 1

2
.

(a) What is the probability that it will take at least 3 hours to replace a windshield?
(b) What is the probability that it will take at least 5 hours to replace a windshield given

that it hasn’t been finished after 2 hours?

Exercise 10.2: The number of years a u-phone functions is exponentially distributed with
parameter λ = 1

8
. If Pat buys a used u-phone, what is the probability that it will be working

after an additional 8 years?

Exercise 10.3: Suppose that the time (in minutes) required to check out a book at the
library can be represented by an exponentially distributed random variable with parameter
λ = 2

11
.

(a) What is the probability that it will take at least 5 minutes to check out a book?
(b) What is the probability that it will take at least 11 minutes to check out a book given

that you’ve already waited for 6 minutes?

Exercise 10.4: Let X be an exponential random variable with mean E [X] = 1. Define a
new random variable Y = eX . Find the p.d.f. of Y , fY (y).

Exercise 10.5: Suppose that X has an exponential distribution with parameter λ = 1.
Let c > 0. Show that Y = X

c
is exponential with parameter λ = c.

Exercise 10.6: Let X be a uniform random variable over (0, 1). Define a new random
variable Y = eX . Find the probability density function of Y , fY (y).

Exercise 10.7: An insurance company insures a large number of homes. The insured
value, X, of a randomly selected home is assumed to follow a distribution with density
function

fX(t) =


8
t3

t > 2,

0 otherwise.

(A) Given that a randomly selected home is insured for at most 4, calculate the proba-
bility that it is insured for less than 3.

(B) Given that a randomly selected home is insured for at least 3, calculate the proba-
bility that it is insured for less than 4.

Exercise 10.8: A hospital is to be located along a road of infinite length. If population
density is exponentially distributed along the road, where should the station be located to
minimize the expected distance to travel to the hospital? That is, find an a to minimize
E|X − a| where X is exponential with rate λ.
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10.4. Selected solutions

Solution to Exercise 10.1(A): We have

P (X > 3) = 1− P (0 < X < 3)

= 1−
ˆ 3

0

1

2
e−

x
2 dx

= e−
3
2 ≈ .2231.

Solution to Exercise 10.1(B): There are two ways to do this. The longer one is to calculate
P(X > 5 | X > 2). The shorter one is to remember that the exponential distribution is
memoryless and to observe that P(X > t + 3 | X > t) = P (X > 3), so the answer is the
same as the answer to (a).

Solution to Exercise 10.2: e−1

Solution to Exercise 10.3(A): Recall a formula P (X > a) = e−λa, then

P (X > 5) = e−
10
11 .

Solution to Exercise 10.3(B): We use the memoryless property

P (X > 11 | X > 6) = P (X > 6 + 5 | X > 6)

= P (X > 5) = e−
10
11 .

Solution to Exercise 10.4: Since E [X] = 1 then we know that λ=1. Then it’s pdf and
cdf is

fX(x) = e−x, x ≥ 0

FX(x) = 1− e−x, x ≥ 0.

By using the given relation,

Fy(y) = P (Y ≤ y) = P
(
eX ≤ y

)
= P (X ≤ ln y) = FX (ln y)

and so
FY (y) = 1− e− ln y = 1− 1

y
, when ln(y) ≥ 0,

taking derivatives we get

fY (y) =
dFy(y)

dy
=

1

y2
, when y ≥ 1.

Solution to Exercise 10.5: Since X is exponential with parameter 1, then its pdf and cdf
are

fX(x) = e−x, x ≥ 0

FX(x) = 1− e−x, x ≥ 0.

By using the given relation,

FY (y) = P (Y ≤ y) = P
(
X

c
≤ y

)
= P (X ≤ cy) = FX (cy)
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and so
FY (y) = 1− e−cy, when cy ≥ 0,

taking derivatives we get

fY (y) =
dFy(y)

dy
= ce−cy, when y ≥ 0.

Note that this is the pdf of an exponential with parameter λ = c.

Solution to Exercise 10.6: Since X is uniform over (0, 1), then it’s pdf and cdf are
fX(x) = 1 , 0 ≤ x < 1

FX(x) = x , 0 ≤ x < 1.

By using the given relation,
Fy(y) = P (Y ≤ y) = P

(
eX ≤ y

)
= P (X ≤ ln y) = FX (ln y)

and so
FY (y) = ln y, when 0 ≤ ln y < 1.

taking derivatives we get

fY (y) =
dFy(y)

dy
=

1

y
, when 1 < y < e1.

Solution to Exercise 10.7(A): Using the definition of conditional probability

P(X < 3 | X < 4) =
P(X < 3)

P(X < 4)
.

Since

P(X < 4) =

ˆ 4

2

8

t3
dt =

[
− 4

t2

]3

2
=

3

4
and P(2 < X < 3) =

ˆ 3

2

8

t3
dt =

[
− 4

t2

]3

2
=

5

9
,

the probability we look for is 20
27
≈ 0.74074074.

Solution to Exercise 10.7(B): Using the definition of conditional probability

P(X < 4 | X > 3) =
P(3 < X < 4)

P(X > 3)
.

Since

P(X > 3) =

ˆ ∞
3

8

t3
dt =

[
− 4

t2

]∞
3

=
4

9
and P(3 < X < 4) =

ˆ 4

3

8

t3
dt =

[
− 4

t2

]4

3
=

7

36
,

the probability we look for is 7
16

= 0.4375.
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Variables





CHAPTER 11

Multivariate distributions

11.1. Introduction

We want to discuss collections of random variables (X1, X2, . . . , Xn), which are known as
random vectors. In the discrete case, we can define the density p(x, y) = P(X = x, Y = y).
Remember that here the comma means “and". In the continuous case a density is a function
such that

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

ˆ b

a

ˆ d

c

f(x, y)dy dx.

Example 11.1: If fX,Y (x, y) = ce−xe−2y for 0 < x <∞ and x < y <∞, what is c?

Answer. We use the fact that a density must integrate to 1. Soˆ ∞
0

ˆ ∞
x

ce−xe−2ydy dx = 1.

Recalling multivariable calculus, this isˆ ∞
0

ce−x 1
2
e−2xdx =

c

6
,

so c = 6.

The multivariate distribution function of (X, Y ) is defined by FX,Y (x, y) = P(X ≤ x, Y ≤ y).
In the continuous case, this is

FX,Y (x, y) =

ˆ x

−∞

ˆ y

−∞
fX,Y (x, y)dy dx,

and so we have

f(x, y) =
∂2F

∂x∂y
(x, y).

The extension to n random variables is exactly similar.

We have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

ˆ b

a

ˆ d

c

fX,Y (x, y)dy dx,

or

P((X, Y ) ∈ D) =

ˆ ˆ
D

fX,Y dy dx

111



112 11. MULTIVARIATE DISTRIBUTIONS

when D is the set {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. One can show this holds when D is any
set. For example,

P(X < Y ) =

ˆ ˆ
{x<y}

fX,Y (x, y)dy dx.

If one has the joint density fX,Y (x, y) of X and Y , one can recover the marginal densities
of X and of Y :

fX(x) =

ˆ ∞
−∞

fX,Y (x, y)dy, fY (y) =

ˆ ∞
−∞

fX,Y (x, y)dx.

If we have a binomial with parameters n and p, this can be thought of as the number of
successes in n trials, and

P(X = k) =
n!

k!(n− k)!
pk(1− p)n−k.

If we let k1 = k, k2 = n− k, p1 = p, and p2 = 1− p, this can be rewritten as

n!

k1!k2!
pk11 p

k2
2 ,

as long as n = k1 + k2. Thus this is the probability of k1 successes and k2 failures, where the
probabilities of success and failure are p1 and p2, resp.

A multivariate random vector is (X1, . . . , Xr) with

P(X1 = n1, . . . , Xr = nr) =
n!

n1! · · ·nr!
pn1

1 · · · pnr
r ,

where n1 + · · ·+nr = n and p1 + · · · pr = 1. Thus this generalizes the binomial to more than
2 categories.

In the discrete case we say X and Y are independent if P(X = x, Y = y) = P(X = x)P(Y =
y) for all x and y. In the continuous case, X and Y are independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all pairs of subsets A,B of the reals. The left hand side is an abbreviation for

P({ω : X(ω) is in A and Y (ω) is in B})

and similarly for the right hand side.

In the discrete case, if we have independence,

pX,Y (x, y) = P(X = x, Y = y) = P(X = x)P(Y = y)

= pX(x)pY (y).
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In other words, the joint density pX,Y factors. In the continuous case,ˆ b

a

ˆ d

c

fX,Y (x, y)dy dx = P(a ≤ X ≤ b, c ≤ Y ≤ d)

= P(a ≤ X ≤ b)P(c ≤ Y ≤ d)

=

ˆ b

a

fX(x)dx

ˆ d

c

fY (y)dy

=

ˆ b

a

ˆ d

c

fX(x)fY (y) dy dx..

One can conclude from this by taking partial derivatives that

fX,Y (x, y) = fX(x)fY (y),

or again the joint density factors. Going the other way, one can also see that if the joint
density factors, then one has independence.

Example 11.2: Suppose one has a floor made out of wood planks and one drops a needle
onto it. What is the probability the needle crosses one of the cracks? Suppose the needle is
of length L and the wood planks are D across.

Answer. Let X be the distance from the midpoint of the needle to the nearest crack and let
Θ be the angle the needle makes with the vertical. Then X and Θ will be independent. X
is uniform on [0, D/2] and Θ is uniform on [0, π/2]. A little geometry shows that the needle
will cross a crack if L/2 > X/ cos Θ. We have fX,Θ = 4

πD
and so we have to integrate this

constant over the set where X < L cos Θ/2 and 0 ≤ Θ ≤ π/2 and 0 ≤ X ≤ D/2. The
integral is ˆ π/2

0

ˆ L cos θ/2

0

4

πD
dx dθ =

2L

πD
.

If X and Y are independent, then

P(X + Y ≤ a) =

ˆ ˆ
{x+y≤a}

fX,Y (x, y)dx dy

=

ˆ ˆ
{x+y≤a}

fX(x)fY (y)dx dy

=

ˆ ∞
−∞

ˆ a−y

−∞
fX(x)fY (y)dx dy

=

ˆ
FX(a− y)fY (y)dy.

Differentiating with respect to a, we have the convolution formula for the density of
X + Y :

fX+Y (a) =

ˆ
fX(a− y)fY (y)dy.

There are a number of cases where this is interesting.
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(1) If X is a gamma with parameters s and λ and Y is a gamma with parameters t and λ,
then straightforward integration shows that X + Y is a gamma with parameters s + t and
λ. In particular, the sum of n independent exponentials with parameter λ is a gamma with
parameters n and λ.

(2) If Z is a N (0, 1), then FZ2(y) = P(Z2 ≤ y) = P(−√y ≤ Z ≤ √y) = FZ(
√
y)−FZ(−√y).

Differentiating shows that fZ2(y) = ce−y/2(y/2)(1/2)−1, or Z2 is a gamma with parameters 1
2

and 1
2
. So using (1) above, if Zi are independent N (0, 1)’s, then

∑n
i=1 Z

2
i is a gamma with

parameters n/2 and 1
2
, i.e., a χ2

n.

(3) If Xi is a N (µi, σ
2
i ) and the Xi are independent, then some lengthy calculations show

that
∑n

i=1Xi is a N (
∑
µi,
∑
σ2
i ).

(4) The analogue for discrete random variables is easier. If X and Y takes only nonnegative
integer values, we have

P(X + Y = r) =
r∑

k=0

P(X = k, Y = r − k)

=
r∑

k=0

P(X = k)P(Y = r − k).

In the case where X is a Poisson with parameter λ and Y is a Poisson with parameter µ, we
see that X + Y is a Poisson with parameter λ+ µ. To check this, use the above formula to
get

P(X + Y = r) =
r∑

k=0

P(X = k)P(Y = r − k)

=
r∑

k=0

e−λ
λk

k!
e−µ

µr−k

(r − k)!

= e−(λ+µ) 1

r!

r∑
k=0

r
k

λkµr−k

= e−(λ+µ) (λ+ µ)r

r!
using the binomial theorem.

Note that it is not always the case that the sum of two independent random variables will
be a random variable of the same type.

If X and Y are independent normals, then −Y is also a normal (with E (−Y ) = −EY and
Var(−Y ) = (−1)2VarY = VarY ), and so X − Y is also normal.
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To define a conditional density in the discrete case, we write

pX|Y=y(x | y) = P(X = x | Y = y).

This is equal to
P(X = x, Y = y)

P(Y = y)
=
p(x, y)

pY (y)
.

Analogously, we define in the continuous case

fX|Y=y(x | y) =
f(x, y)

fY (y)
.

Just as in the one-dimensional case, there is a change of variables formula.

Let us recall how the formula goes in one dimension. If X has a density fX and Y = g(X),
then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

= P(X ≤ g−1(y)) = FX(g−1(y)).

Taking the derivative, using the chain rule, and recalling that the derivative of g−1(y) is

(g−1(y))′ =
1

g′(x)
=

1

g′(g−1(y))
.

Here we use that y = g(x), x = g−1(y), and assume that g(x) is an increasing function.

Thus, we have

(*) fY (y) = fX(g−1(y))
1

|g′(g−1(y))|
=
fX(x)

|g′(x)|

which is defined on the range of the random variable X.

The higher dimensional case is very analogous. Suppose Y1 = g1(X1, X2) and Y2 = g2(X1, X2).
Let h1 and h2 be such that X1 = h1(Y1, Y2) and X2 = h2(Y1, Y2). This plays the role of g−1.

Let J be the Jacobian of the mapping (x1, x2)→ (g1(x1, x2), g2(x1, x2)), so that

J =
∂g1

∂x1

∂g2

∂x2

− ∂g1

∂x2

∂g2

∂x1

.

This is the analogue of g′(g−1(y)) = g′(x). Using the change of variables theorem from
multivariable calculus, we have

fY1,Y2(y1, y2) =
fX1,X2

|J |

which is defined on the range of the random variables (Y1, Y2) and is analogous to (*).
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Example 11.3: Suppose X1 is N (0, 1), X2 is N (0, 4), and X1 and X2 are independent. Let
Y1 = 2X1 +X2, Y2 = X1 − 3X2. Then y1 = g1(x1, x2) = 2x1 + x2, y2 = g2(x1, x2) = x1 − 3x2,
so

J =

2 1

1 −3

 = −7.

(In general, J might depend on x, and hence on y.) Some algebra leads to x1 = 3
7
y1 + 1

7
y2,

x2 = 1
7
y1 − 2

7
y2. Since X1 and X2 are independent,

fX1,X2(x1, x2) = fX1(x1)fX2(x2) =
1√
2π
e−x

2
1/2

1√
8π
e−x

2
2/8.

Therefore
fY1,Y2(y1, y2) =

1√
2π
e−( 3

7
y1+ 1

7
y2)2/2 1√

8π
e−( 1

7
y1− 2

7
y2)2/8 1

7
.
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11.2. Further examples and applications

Example 11.4: Suppose we roll two dice with sides 1, 1, 2, 2, 3, 3. Let X be the largest
value obtained on any of the two dice. Let Y = be the sum of the two dice. Find the joint
p.m.f. of X and Y .

Answer. First we make a table of all the possible outcomes. Note that individually, X = 1, 2, 3
and Y = 2, 3, 4, 5, 6. The table for possible outcomes of (X, Y ) jointly is:

outcome 1 2 3

1 (X = 1, Y = 2) = (1, 2) (2, 3) (3, 4)

2 (2, 3) (2, 4) (3, 5)

3 (3, 4) (3, 5) (3, 6)

Using this table we have that the p.m.f. is given by:

X\Y 2 3 4 5 6

1 P (X = 1, Y = 2) = 1
9

0 0 0 0

2 0 2
9

1
9

0 0

3 0 0 2
9

2
9

1
9

Example 11.5: Let X, Y have joint pdf

f(x, y) =

{
ce−xe−2y , 0 < x <∞, 0 < y <∞
0 otherwise

.

(a) Find c that makes this a joint pdf:
Answer. The region that we integrate over in the first quadrant thus

1 =

ˆ ∞
0

ˆ ∞
0

ce−xe−2ydxdy = c

ˆ ∞
0

e−2y
[
−e−x

]∞
0
dy

= c

ˆ ∞
0

e−2ydy = c

[
−1

2
e−2y

]∞
0

= c
1

2
.

Then c = 2.
(b) Find P (X < Y ).

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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Answer. We need to draw the region Let D = {(x, y) | 0 < x < y, 0 < y <∞} and set
up the the double integral:

P (X < Y ) =

ˆ ˆ
D

f(x, y)dA

=

ˆ ∞
0

ˆ y

0

2e−xe−2ydxdy

= work
1

3
.

(c) Set up the double integral for P (X > 1, Y < 1)
Answer.

P (X > 1, Y < 1) =

ˆ 1

0

ˆ ∞
1

2e−xe−2ydxdy = (1− e−1)e−2.

(d) Find the marginal fX(x):
Answer. We have

fX(x) =

ˆ ∞
−∞

f(x, y)dy =

ˆ ∞
0

2e−xe−2ydy

= 2e−x
[
−1

2
e−2y

]∞
0

= 2e−x
[
0 +

1

2

]
= e−x.

Example 11.6: Let X, Y be r.v. with joint pdf

f(x, y) = 6e−2xe−3y 0 < x <∞, 0 < y <∞.

Are X, Y independent?

Answer.

Find fX and fY and see if f = fXfY . First

fX(x) =

ˆ ∞
0

6e−2xe−3ydy = 2e−2x,

fY (y) =

ˆ ∞
0

6e−2xe−3ydx = 3e−2y.

which are both exponential. Since f = fXfY then yes they are independent!

Example 11.7: Let X, Y have

fX,Y (x, y) = x+ y, 0 < x < 1, 0 < y < 1

Are X, Y independent?

Answer. Note that there is no way to factor x + y = fX(x)fY (y), hence they can’t be
independent.
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Proposition 11.1. If Xi ∼ N (µi, σ
2
i ) are independent for 1 ≤ i ≤ n then

X1 + · · ·+Xn ∼ N
(
µ1 + · · ·µn, σ2

1 + · · ·+ σ2
n

)
.

In particular if X ∼ N (µx, σ
2
x) and Y ∼ N (µy, σ

2
y) then X + Y ∼ N

(
µx + µy, σ

2
x + σ2

y

)
and

X − Y ∼ N
(
µx − µy, σ2

x + σ2
y

)
. In general for two independent Gaussian X and Y we have

cX + dY ∼ N
(
cµx + dµy, cσ

2
x + dσ2

y

)
.

Example 11.8: Suppose T ∼ N (95, 25) and H ∼ N (65, 36) represents the grades of T.
and H. in their Probability class.

(a) What is the probability that their average grades will be less than 90?
Answer.

By the proposition T +H ∼ N (160, 61). Thus

P
(
T +H

2
≤ 90

)
= P (T +H ≤ 180)

= P
(
Z ≤ 180− 160√

61

)
= Φ

(
180− 160√

61

)
≈ Φ (2.56) ≈ .9961

(b) What is the probability that H. will have scored higher than T.?
Answer.

Using H − T ∼ N (−30, 61) we compute

P (H > T ) = P (H − T > 0)

= 1− P (H − T < 0)

= 1− P
(
Z ≤ 0− (−30)√

61

)
≈ 1− Φ(3.84) ≈ 0.00006

–
(c) Answer question (b) if T ∼ N (90, 64) and H ∼ N (70, 225).

Answer.
By the proposition T −H ∼ N (−20, 289) and so

P (H > T ) = P (H − T > 0)

= 1− P (H − T < 0)

= 1− P
(
Z ≤ 0− (−20)

17

)
≈ 1− Φ(1.18) ≈ 0.11900

Example 11.9: Suppose X1, X2 have joint distribution

fX1,X2(x1, x2) =

{
x1 + 3

2
(x2)2 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0 otherwise
.
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Find the joint pdf of Y1 = X1 +X2 and Y2 = X2
1 .

Answer.

Step 1: Find the Jacobian:
y1 = g1 (x1, x2) = x1 + x2,

y2 = g2 (x1, x2) = x2
1.

So

J (x1, x2) =

∣∣∣∣∣∣∣∣
1 1

2x1 0

∣∣∣∣∣∣∣∣ = −2x1

Step 2: Solve for x1, x2 and get
x1 =

√
y2,

x2 = y1 −
√
y2.

Step 3: The joint pdf of Y1, Y2 is given by the formula:

fY1,Y2 (y1, y2) = fX1,X2 (x1, x2) |J (x1, x2)|−1

= fX1,X2 (
√
y2, y1 −

√
y2)

1

2x1

=


1

2
√
y2

[√
y2 + 3

2

(
y1 −

√
y2

)2
]

0 ≤ y2 ≤ 1, 0 ≤ y1 −
√
y2 ≤ 1

0 otherwise
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11.3. Exercises

Exercise 11.1: Suppose that 2 balls are chosen without replacement from an urn consisting
of 5 white and 8 red balls. Let X equal 1 if the first ball selected is white and zero otherwise.
Let Y equal 1 if the second ball selected is white and zero otherwise.

(A) Find the probability mass function of X, Y .
(B) Find E (XY ).
(C) Is it true that E (XY ) = (EX)(EY )?
(D) Are X, Y independent?

Exercise 11.2: Suppose you roll two fair dice. Find the probability mass function of X
and Y , where X is the largest value obtained on any die, and Y is the sum of the values.

Exercise 11.3: Suppose the joint density function of X and Y is f(x, y) = 1
4
for 0 < x < 2

and 0 < y < 2.

(A) Calculate P
(

1
2
< X < 1, 2

3
< Y < 4

3

)
.

(B) Calculate P (XY < 2).
(C) Calculate the marginal distributions fX(x) and fY (y).

Exercise 11.4: The joint probability density function of X and Y is given by

f(x, y) = e−(x+y), 0 ≤ x <∞, 0 ≤ y <∞.
Find P (X < Y ).

Exercise 11.5: Suppose X and Y are independent random variables and that X is expo-
nential with λ = 1

4
and Y is uniform on (2, 5). Calculate the probability that 2X + Y < 8.

Exercise 11.6: Consider X and Y given by the joint density

f(x, y) =

{
10x2y 0 ≤ y ≤ x ≤ 1

0 otherwise.

(A) Find the marginal pdfs, fX(x) and fY (x).
(B) Are X and Y independent random variables?
(C) Find P

(
Y ≤ X

2

)
.

(D) Find P
(
Y ≤ X

4
| Y ≤ X

2

)
.

(E) Find E [X].

Exercise 11.7: Consider X and Y given by the joint density

f(x, y) =

{
4xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

(A) Find the joint pdf’s, fX and fY .
(B) Are X and Y independent?
(C) Find EY .
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Exercise 11.8: Consider X, Y given by the joint pdf

f(x, y) =

{
2
3

(x+ 2y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

Are X and Y independent random variables?

Exercise 11.9: Suppose that gross weekly ticket sales for UConn basketball games are
normally distributed with mean $2, 200, 000 and standard deviation $230, 000. What is the
probability that the total gross ticket sales over the next two weeks exceeds $4, 600, 000?

Exercise 11.10: Suppose the joint density function of the random variable X1 and X2 is

f(x1, x2) =

{
4x1x2 0 < x1 < 1, 0 < x2 < 1

0 otherwise.

Let Y1 = 2X1 +X2 and Y2 = X1 − 3X2. What is the joint density function of Y1 and Y2?

Exercise 11.11: Suppose the joint density function of the random variable X1 and X2 is

f(x1, x2) =

{
3
2

(x2
1 + x2

2) 0 < x1 < 1, 0 < x2 < 1

0 otherwise.

Let Y1 = X1 − 2x2 and Y2 = 2X1 + 3X2. What is the joint density function of Y1 and Y2?

Exercise 11.12: We roll two dice. Let X be the minimum of the two numbers that
appear, and let Y be the maximum. Find the joint probability mass function of (X, Y ), that
is, P (X = i, Y = j):

i

j
1 2 3 4 5 6

1

2

3

4

5

6

Also find the marginal probability mass functions of X and Y . Finally, find the conditional
probability mass function of X given that Y is 5, P (X = i|Y = 5), for i = 1, . . . , 6.
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11.4. Selected solutions

Solution to Exercise 11.1(A): We have

p(0, 0) = P (X = 0, Y = 0) = P (RR) =
8 · 7

13 · 12
=

14

39
,

p(1.0) = P (X = 1, Y = 0) = P (WR) =
5 · 8

13 · 12
=

10

39
,

p(0, 1) = P (X = 0, Y = 1) = P (RW ) =
8 · 5

13 · 12
=

10

39
,

p(1, 1) = P (X = 1, Y = 1) = P (WW ) =
5 · 4

13 · 12
=

5

39
.

Solution to Exercise 11.1(B):

E (XY ) = P (X = 1, Y = 1) =
5

39
≈ 0.1282

Solution to Exercise 11.1(C): Not true because

(EX)(EY ) = P (X = 1)P (Y = 1) =

(
5

13

)2

=
25

169
≈ 0.1479

Solution to Exercise 11.1(D): X and Y are not independent because

P (X = 1, Y = 1) =
5

39
6= P (X = 1)P (Y = 1) =

(
5

13

)2

.

Solution to Exercise 11.2: First we need to figure what values X, Y can attain. Note
that X can be any of 1, 2, 3, 4, 5, 6, but Y is the sum and can only be as low as 2 and as high
as 12. First we make a table of possibilities for (X, Y ) given the values of the dice. Recall
X is the largest of the two, and Y is the sum of them. The possible outcomes are given by:

1st die\2nd die 1 2 3 4 5 6

1 (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7)

2 (2, 3) (2, 4) (3, 5) (4, 6) (5, 7) (6, 8)

3 (3, 4) (3, 5) (3, 6) (4, 7) (5, 8) (6, 9)

4 (4, 5) (4, 6) (4, 7) (4, 8) (5, 9) (6, 10)

5 (5, 6) (5, 7) (5, 8) (5, 9) (5, 10) (6, 11)

6 (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12)
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Then we make a table of the pmf p(x, y).

X\Y 2 3 4 5 6 7 8 9 10 11 12

1 1
36

0 0 0 0 0 0 0 0 0 0

2 0 2
36

1
36

0 0 0 0 0 0 0 0

3 0 0 2
36

2
36

1
36

0 0 0 0 0 0

4 0 0 0 2
36

2
36

2
36

1
36

0 0 0 0

5 0 0 0 0 2
36

2
36

2
36

2
36

1
36

0 0

6 0 0 0 0 0 2
36

2
36

2
36

2
36

2
36

1
36

Solution to Exercise 11.3(A): We integrate the pdf over the bounds and get
ˆ 1

1
2

ˆ 4
3

2
3

1

4
dydx =

1

4

(
1− 1

2

)(
4

3
− 2

3

)
=

1

12
.

Solution to Exercise 11.3(B): We need to find the region that is within 0 < x, y < 2
and y < 2

x
. (Try to draw the region) We get two regions from this. One with bounds

0 < x < 1, 0 < y < 2 and the region 1 < x < 2, 0 < y < 2
x
. Then

P (XY < 2) =

ˆ 1

0

ˆ 2

0

1

4
dydx+

ˆ 2

1

ˆ 2
x

0

1

4
dydx

=
1

2
+

ˆ 2

1

1

2x
dx

=
1

2
+

ln 2

2
.

Solution to Exercise 11.3(C): Recall that

fX(x) =

ˆ ∞
−∞

f(x, y)dy =

ˆ 2

0

1

4
dy =

1

2

for 0 < x < 2 and 0 otherwise. By symmetry, fY is the same.

Solution to Exercise 11.4: Draw a picture of the region and note the integral needs to
be set up in the following way: are

P (X < Y ) =

ˆ ∞
0

ˆ y

0

e−(x+y)dxdy =

ˆ ∞
0

[
−e−2y + e−y

]
dy

=

[
1

2
e−2y − e−y

]∞
0

= 0−
(

1

2
− 1

)
=

1

2
.
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Solution to Exercise 11.5: We know that

fX(x) =

{
1
4
e−

x
4 when x ≥ 0

0 otherwise

and

fY (y) =

{
1
3

when 2 < y < 5

0 otherwise

Since X, Y are independent then fX,Y = fXfY , thus

fX,Y (x, y) =

{
1
12
e−

x
4 when x ≥ 0, 2 < y < 5

0 otherwise

Draw the region (2X + Y < 8), which correspond to 0 ≤ x, 0 < y < 5 and y < 8 − 2x.
Drawing a picture of the region, we get the corresponding bounds of 2 < y < 5 and 0 < x <
4− y

2
, so that

P (2X + Y < 8) =

ˆ 5

2

ˆ 4− y
2

0

1

12
e−

x
4 dxdy

=

ˆ 5

2

1

3

(
1− ey/8−1

)
dx

= 1− 8

3

(
e−

3
8 − e−

3
4

)
Solution to Exercise 11.6(A): We have

fX(x) =

{
5x4 0 ≤ x ≤ 1

0 otherwise
,

fY (y) =

{
10
3
y(1− y3) 0 ≤ y ≤ 1

0 otherwise
.

Solution to Exercise 11.6(B): No, since fX,Y 6= fXfY .

Solution to Exercise 11.6(C): P
(
Y ≤ X

2

)
= 1

4
.

Solution to Exercise 11.6(D): Also 1
4
.

Solution to Exercise 11.6(E): Use fX and the definition of expected value, which is 5/6.

Solution to Exercise 11.7(A): fX = 2x and fY = 2y.

Solution to Exercise 11.7(B): Yes! Since f(x, y) = fXfY .

Solution to Exercise 11.7(C): We have EY =
´ 1

0
y · 2ydy = 2

3
.

Solution to Exercise 11.8: We get fX =
(

2
3
x+ 2

3

)
while fY = 1

3
+ 4

3
y and f 6= fXfY .

Solution to Exercise 11.9: If W = X1 +X2 is the sales over the next two weeks, then W
is normal with mean 2, 200, 000 + 2, 200, 000 = 4, 400, 00 and variance 230, 0002 + 230, 0002.
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Thus the variance is
√

230, 0002 + 230, 0002 = 325, 269.1193. Hence

P (W > 5, 000, 000) = P
(
Z >

4, 600, 000− 4, 400, 000

325, 269.1193

)
= P (Z > .6149)

≈ 1− Φ (.61)

= .27

Solution to Exercise 11.10:

Step 1: Find the Jacobian:

y1 = g1 (x1, x2) = 2x1 + x2,

y2 = g2 (x1, x2) = x1 − 3x2.

So

J (x1, x2) =

∣∣∣∣∣∣∣∣
2 1

1 −3

∣∣∣∣∣∣∣∣ = −7.

Step 2: Solve for x1, x2 and get

x1 =
3

7
y1 +

1

7
y2

x2 =
1

7
y1 −

2

7
y2

Step 3: The joint pdf of Y1, Y2 is given by the formula:

fY1,Y2 (y1, y2) = fX1,X2 (x1, x2) |J (x1, x2)|−1

= fX1,X2

(
3

7
y1 +

1

y
y2,

1

7
y1 −

2

7
y2

)
1

7
.

Since we are given the joint pdf of X1 and X2, then plugging it these into fX1,X2 ,
we have

fY1,Y2 (y1, y2) =

{
4
73

(3y1 + y2) (y1 − 2y2) 0 < 3y1 + y2 < 7, 0 < y1 − 2y2 < 2

0 otherwise.

Solution to Exercise 11.11:

Step 1: Find the Jacobian:

y1 = g1 (x1, x2) = x1 − 2x2,

y2 = g2 (x1, x2) = 2x1 + 3x2.

So

J (x1, x2) =

∣∣∣∣∣∣∣∣
1 −2

2 3

∣∣∣∣∣∣∣∣ = 7.
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Step 2: Solve for x1, x2 and get

x1 =
1

7
(3y1 + 2y2)

x2 =
1

7
(−2y1 + y2)

Step 3: The joint pdf of Y1, Y2 is given by the formula:

fY1,Y2 (y1, y2) = fX1,X2 (x1, x2) |J (x1, x2)|−1

= fX1,X2

(
1

7
(3y1 + 2y2) ,

1

7
(−2y1 + y2)

)
1

7
.

Since we are given the joint pdf of X1 and X2, then plugging it these into fX1,X2 ,
we have

fY1,Y2 (y1, y2) =

{
3
2
· 1

73

(
(3y1 + 2y2)2 + (−2y1 + y2)2) 0 < 3y1 + 2y2 < 7, 0 < −2y1 + y2 < 7

0 otherwise.





CHAPTER 12

Expectations

12.1. Introduction

As in the one variable case, we have

E g(X, Y ) =
∑∑

g(x, y)p(x, y)

in the discrete case and

E g(X, Y ) =

ˆ ˆ
g(x, y)f(x, y)dx dy

in the continuous case.

If we set g(x, y) = x+ y, then

E (X + Y ) =

ˆ ˆ
(x+ y)f(x, y)dx dy

=

ˆ ˆ
xf(x, y)dx dy +

ˆ ˆ
yf(x, y)dx dy.

If we now set g(x, y) = x, we see the first integral on the right is EX, and similarly the
second is EY . Therefore

E (X + Y ) = EX + EY.

Proposition 12.1: If X and Y are independent, then

E [h(X)k(Y )] = Eh(X)E k(Y ).

In particular, E (XY ) = (EX)(EY ).

Proof. By the above with g(x, y) = h(x)k(y),

E [h(X)k(Y )] =

ˆ ˆ
h(x)k(y)f(x, y)dx dy

=

ˆ ˆ
h(x)k(y)fX(x)fY (y)dx dy

=

ˆ
h(x)fX(x)

ˆ
k(y)fY (y)dy dx

=

ˆ
h(x)fX(x)(E k(Y ))dx

= Eh(X)E k(Y ).

129
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The covariance of two random variables X and Y is defined by
Cov(X, Y ) = E [(X − EX)(Y − EY )].

As with the variance, Cov(X, Y ) = E (XY ) − (EX)(EY ). It follows that if X and Y are
independent, then E (XY ) = (EX)(EY ), and then Cov(X, Y ) = 0.

Note
Var(X + Y )

= E [((X + Y )− E (X + Y ))2]

= E [((X − EX) + (Y − EY ))2]

= E [(X − EX)2 + 2(X − EX)(Y − EY ) + (Y − EY )2]

= VarX + 2Cov(X, Y ) + VarY.

We have the following corollary.

Proposition 12.2: If X and Y are independent, then
Var(X + Y ) = VarX + VarY.

Proof. We have
Var(X + Y ) = VarX + VarY + 2Cov(X, Y ) = VarX + VarY.

Since a binomial is the sum of n independent Bernoulli’s, its variance is np(1 − p). If we
write X =

∑n
i=1Xi/n and the Xi are independent and have the same distribution (X is

called the sample mean), then EX = EX1 and VarX = VarX1/n.

We define the conditional expectation of X given Y by

E [X | Y = y] =

ˆ
xfX|Y=y(x)dx.
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12.2. Further examples and applications

12.2.1. Expectation and variance.

Example 12.1: Suppose the joint p.m.f of X and Y is given by

X�Y 0 1

0 .2 .7

1 0 .1

.

Find E [XY ].

Answer.

Using the formula we have

E [XY ] =
∑
i,j

xiyjp(xi, yj)

= 0 · 0p(0, 0) + 1 · 0p(1, 0) + 0 · 1p(0, 1) + 1 · 1p(1, 1)

= .1

Example 12.2: Suppose X, Y are independent exponential r.v. with parameter λ = 1.
Set up a double integral that represents

E
[
X2Y

]
.

Answer.

Since X, Y are independent then

fX,Y (x, y) = e−1xe−1y = e−(x+y). 0 < x, y <∞.

Thus

E
[
X2Y

]
=

ˆ ∞
0

ˆ ∞
0

x2ye−(x+y)dydx.

Example 12.3: Suppose the joint pdf of X, Y is

f(x, y) =

{
10xy2 0 < x < y, 0 < y < 1

0 otherwise
.

Find EXY and Var (Y ).

Answer.

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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We first draw the region (try it!) and then set up the integral

EXY =

ˆ 1

0

ˆ y

0

xy
(
10xy2

)
dxdy = 10

ˆ 1

0

ˆ y

0

x2y3dxdy

=
10

3

ˆ 1

0

y3y3dy =
10

3

1

7
=

10

21
.

First note that Var (Y ) = EY 2 − (EY )2. Then

EY 2 =

ˆ 1

0

ˆ y

0

y2
(
10xy2

)
dxdy = 10

ˆ 1

0

ˆ y

0

y4xdxdy

= 5

ˆ 1

0

y4y2dy =
5

7
.

and

EY =

ˆ 1

0

ˆ y

0

y
(
10xy2

)
dxdy = 10

ˆ 1

0

ˆ y

0

y3xdxdy

= 5

ˆ 1

0

y3y2dy =
5

6
.

So that Var (Y ) = 5
7
−
(

5
6

)2
= 5

252
.

12.2.2. Correlation. We define the correlation coefficient of X and Y by

ρ (X, Y ) =
Cov (X, Y )√

Var (X)Var (Y )

Note that we always have

−1 6 ρ (X, Y ) 6 1.

Moreover, we say that X and Y are

positively correlated if ρ (X, Y ) > 0,

negatively correlated if ρ (X, Y ) < 0,

uncorrelated if ρ (X, Y ) = 0.

Example 12.4: Suppose X, Y are random variables whose joint pdf is given by

f(x, y) =

{
1
y

0 < y < 1, 0 < x < y

0 otherwise
.

(a) Find the covariance of X and Y .
Answer.
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Recall that Cov (X, Y ) = EXY − EXEY . So

EXY =

ˆ 1

0

ˆ y

0

xy
1

y
dxdy =

ˆ 1

0

y2

2
dy =

1

6

EX =

ˆ 1

0

ˆ y

0

x
1

y
dxdy =

ˆ 1

0

y

2
dy =

1

4
.

EY =

ˆ 1

0

ˆ y

0

y
1

y
dxdy =

ˆ 1

0

ydy =
1

2
.

Thus
Cov (X, Y ) = EXY − EXEY

=
1

6
− 1

4

1

2

=
1

24
.

(b) Compute Var(X) and Var(Y ).
Answer.

We have that

EX2 =

ˆ 1

0

ˆ y

0

x2 1

y
dxdy =

ˆ 1

0

y2

3
dy =

1

9
.

EY 2 =

ˆ 1

0

ˆ y

0

y2 1

y
dxdy =

ˆ 1

0

y2dy =
1

3
.

Thus recall that
Var (X) = EX2 − (EX)2

=
1

9
−
(

1

4

)2

=
7

144

Also
Var (Y ) = EY 2 − (EY )2

=
1

3
−
(

1

2

)2

=
1

12
.

(c) Calculate ρ(X, Y ).
Answer.

ρ (X, Y ) =
Cov (X, Y )√

Var (X)Var (Y )
=

1
24√(

7
144

) (
1
12

) ≈ .6547.
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12.2.3. Conditional expectation. Recall that for two random variables X and Y we
can consider the conditional distribution of X given Y = y for suitable values of y. It is
therefore natural to define the conditional expectation of X given Y = y. This definition
follows the same idea as the “usual” expectation.

If X and Y are discrete with probability mass distribution functions pX and pY respectively,
the conditional expectation of X given Y = y (for pY (y) 6= 0) is defined as

(12.2.1) E[X | Y = y] =
∑
x

xpX|Y=y(x|y),

where pX|Y=y(x|y) = P(X = x | Y = y) was defined in the previous chapter as the conditional
density of X given Y = y.

Analogously, if X and Y are continuous with probability density functions fX and fY ,
respectively, then the conditional expectation of X given Y = y (for fY (y) 6= 0) is defined as

(12.2.2) E[X | Y = y] =

ˆ ∞
−∞

xfX|Y=y(x|y)dx,

where fX|Y=y(x|y) is the conditional density of X given Y = y as defined in the previous
chapter.

All properties of the “usual” expectation that we know will also be satisfied in this case.

Proposition 12.3: For the conditional expectation of X given Y = y it holds that

(i) for any a, b ∈ R, E[aX + b | Y = y] = aE[X | Y = y] + b.
(ii) Var(X | Y = y) = E[X2 | Y = y]− (E[X | Y = y])2.

Example 12.5: Let X and Y be random variables with joint p.d.f.

fXY (x, y) =

{
1
18
e−

x+y
6 if 0 < y < x,

0 otherwise.

In order to find Var(X | Y = 2), we need to compute the conditional p.d.f. of X given
Y = 2, i.e.

fX|Y=2(x|2) =
fXY (x, 2)

fY (2)
.

To this purpose, we compute first the marginal of Y .

fY (y) =

ˆ ∞
y

1

18
e−

x+y
6 dx =

1

3
e−

y
6

[
− e−

y
6

]∞
y

=
1

3
e−

y
3 for y ≥ 0.

Then, we have

fX|Y=2(x|2) =

{
1
6
e

2−x
6 if x > 2,

0 otherwise.
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Now it only remains to compute E[X2 | Y = 2] and E[X | Y = 2]. Applying twice integration
by parts we have

E[X2 | Y = 2] =

ˆ ∞
2

x2

6
e

2−x
6 dx = −

[
x2e

2−x
6

]∞
2
−
[
12xe

2−x
6

]∞
2
−12

[
6e

2−x
6

]∞
2

= 4+24+72 = 100.

On the other hand, again applying integration by parts we get

E[X | Y = 2] =

ˆ ∞
2

x

6
e

2−x
6 dx = −

[
xe−

x−2
6

]∞
2
−
[
6e−

x−2
6

]∞
2

= 2 + 6 = 8.

Finally, we obtain Var(X | Y = 2) = 100− 82 = 36.
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12.3. Exercises

Exercise 12.1: Suppose the joint distribution for X and Y is given by the joint probability
mass function shown below:

Y \X 0 1

0 0 .3

1 .5 .2

(a) Calculate the covariance of X and Y .
(b) Calculate Var(X) and Var(Y ).
(c) Calculate ρ(X, Y ).

Exercise 12.2: Let X and Y be random variable whose joint probability density function
is given by

f(x, y) =

{
x+ y 0 < x < 1, 0 < y < 1

0 otherwise.

(a) Calculate the covariance of X and Y .
(b) Calculate Var(X) and Var(Y ).
(c) Calculate ρ(X, Y ).

Exercise 12.3: Let X be normally distributed with mean 1 and variance 9. Let Y be expo-
nentially distributed with λ = 2. Suppose X and Y are independent. Find E

[
(X − 1)2 Y

]
.

(Hint: Use properties of expectations.)
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12.4. Selected solutions

Solution to Exercise 12.1(A): First let’s calculate the marginal distributions:

Y \X 0 1

0 0 .3 .3

1 .5 .2 .7

.5 .5

Then

EXY = (0 · 0) 0 + (0 · 1) .5 + (1 · 0) .3 + (1 · 1) .2 = .2

EX = 0 · .5 + 1 · .5 = .5

EY = 0 · .3 + 1 · .7 = .7.

Solution to Exercise 12.1(B): First need

EX2 = 02.5 + 12.5 = .5

EY 2 = 02.3 + 12.7 = .7

Therefore

Var(X) = EX2 − (EX)2 = .5− (.5)2 = .25,

Var(Y ) = EY 2 − (EY )2 = .7− (.7)2 = .21,

Solution to Exercise 12.1(C):

ρ(X, Y ) =
Cov(X, Y )√

Var(X) · Var(Y )
=≈ −.6547.

Solution to Exercise 12.2(A): We’ll need E [XY ] ,EX, and EY :

E [XY ] =

ˆ 1

0

ˆ 1

0

xy (x+ y) dydx =

ˆ 1

0

(
x2

2
+
x

3

)
dx =

1

3
,

EX =

ˆ 1

0

ˆ 1

0

x(x+ y)dydx =

ˆ 1

0

(x2 +
x

2
)dx =

7

12

EY =
7

12
, by symmetry with the EX case.

Therefore,

Cov(X, Y ) = E [XY ]− E [X]E [Y ] =
1

3
−
(

7

12

)2

= − 1

144
.
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Solution to Exercise 12.2(B): We need EX2 and EY 2,

EX2 =

ˆ 1

0

ˆ 1

0

x2(x+ y)dydx =

ˆ 1

0

(x3 +
x2

2
)dx =

5

12

so we know that EY 2 = 5
12

by symmetry. Therefore

Var(X) = Var(Y ) =
5

12
−
(

7

12

)2

=
11

144
.

Solution to Exercise 12.2(C):

ρ(X, Y ) =
Cov(X, Y )√

Var(X) · Var(Y )
= − 1

11
.

Solution to Exercise 12.3: Since X, Y are independent then

E
[
(X − 1)2 Y

]
= E

[
(X − 1)2]E [Y ]

= Var(X)µY

= 9/2 = 4.5



CHAPTER 13

Moment generating functions

13.1. Introduction

We define the moment generating function mX by

mX(t) = E etX ,
provided this is finite. In the discrete case this is equal to

∑
etxp(x) and in the continuous

case
´
etxf(x)dx.

Let us compute the moment generating function for some of the distributions we have been
working with.

1. Bernoulli: pet + (1− p).
2. Binomial: using independence,

E et
∑
Xi = E

∏
etXi =

∏
E etXi = (pet + (1− p))n,

where the Xi are independent Bernoulli’s.

3. Poisson:

E etX =
∑ etke−λλk

k!
= e−λ

∑ (λet)k

k!
= e−λeλe

t

= eλ(et−1).

4. Exponential:

E etX =

ˆ ∞
0

etxλe−λxdx =
λ

λ− t
if t < λ and ∞ if t ≥ λ.

5. N (0, 1):
1√
2π

ˆ
etxe−x

2/2dx = et
2/2 1√

2π

ˆ
e−(x−t)2/2dx = et

2/2.

6. N (µ, σ2): Write X = µ+ σZ. Then

E etX = E etµetσZ = etµe(tσ)2/2 = etµ+t2σ2/2.

Proposition 13.1: If X and Y are independent, then

mX+Y (t) = mX(t)mY (t).

Proof. By independence and Proposition 12.1,

mX+Y (t) = E etXetY = E etXE etY = mX(t)mY (t).

139
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Proposition 13.2: If mX(t) = mY (t) <∞ for all t in an interval, then X and Y have the
same distribution.

We will not prove this, but this is essentially the uniqueness of the Laplace transform. Note
E etX =

´
etxfX(x)dx. If fX(x) = 0 for x < 0, this is

´∞
0
etxfX(x)dx = LfX(−t), where LfX

is the Laplace transform of fX .

We can use this to verify some of the properties of sums we proved before. For example, if
X is a N (a, b2) and Y is a N (c, d2) and X and Y are independent, then

mX+Y (t) = eat+b
2t2/2ect+d

2t2/2 = e(a+c)t+(b2+d2)t2/2.

Proposition 13.2 then implies that X + Y is a N (a+ c, b2 + d2).

Similarly, if X and Y are independent Poisson random variables with parameters a and b,
resp., then

mX+Y (t) = mX(t)mY (t) = ea(et−1)eb(e
t−1) = e(a+b)(et−1),

which is the moment generating function of a Poisson with parameter a+ b.

One problem with the moment generating function is that it might be infinite. One way
to get around this, at the cost of considerable work, is to use the characteristic function
ϕX(t) = E eitX , where i =

√
−1. This is always finite, and is the analogue of the Fourier

transform.

The joint moment generating function of X and Y is
mX,Y (s, t) = E esX+tY .

If X and Y are independent, then
mX,Y (s, t) = mX(s)mY (t)

by Proposition 13.2. We will not prove this, but the converse is also true: if mX,Y (s, t) =
mX(s)mY (t) for all s and t, then X and Y are independent.
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13.2. Further examples and applications

Example 13.1: Suppose that m.g.f of X is given by m(t) = e3(et−1). Find P (X = 0).

Answer. We can match this m.g.f to a known m.g.f in our table. Looks like

m(t) = e3(et−1) = eλ(et−1) where λ = 3.

Thus X ∼ Poisson(3). Thus

P (X = 0) = e−λ
λ0

0!
= e−3.

We remark that mX(t) is called the moment generating function because we can find all the
moments of X by differentiating m(t) and then evaluating at t = 0. Note that

m′(t) =
d

dt
E
[
etX
]

= E
[
d

dt
etX
]

= E
[
XetX

]
.

Now evaluate at t = 0 and get

m′(0) = E
[
Xe0·X] = E [X] .

Similarly,

m′′(t) =
d

dt
E
[
XetX

]
= E

[
X2etX

]
so that

m′′(0) = E
[
X2e0

]
= E

[
X2
]
.

Continuing to differentiate the m.g.f. we have the following proposition.

Proposition 13.1. For all n ≥ 0 we have

E [Xn] = m(n) (0) .

Example 13.2: Suppose X is a discrete random variable and has the m.g.f.

mX(t) =
1

7
e2t +

3

7
e3t +

2

7
e5t +

1

7
e8t.

What is the p.m.f of X? Find EX.

Answer. This doesn’t match any of the known mg.f.s. Reading off from the mgf we have

1

7
e2t +

3

7
e3t +

2

7
e5t +

1

7
e8t =

4∑
i=1

etxip(xi)

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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then p(2) = 1
7
, p(3) = 3

7
, p(5) = 2

7
and p(8) = 1

7
.

To find E[X] we use Proposition 13.1 by taking the derivative of the moment generating
function:

m′(t) =
2

7
e2t +

9

7
e3t +

10

7
e5t +

8

7
e8t,

so that
E [X] = m′(0) =

2

7
+

9

7
+

10

7
+

8

7
=

29

7
.

Example 13.3: Suppose X has m.g.f

mX(t) = (1− 2t)−
1
2 for t <

1

2
.

Find the first and second moments of X.

Answer. We have

m′X(t) = −1

2
(1− 2t)−

3
2 (−2) = (1− 2t)−

3
2 ,

m′′X(t) = −3

2
(1− 2t)−

5
2 (−2) = 3 (1− 2t)−

5
2 .

So that
EX = m′X(0) = (1− 2 · 0)−

3
2 = 1,

EX2 = m′′X(0) = 3 (1− 2 · 0)−
5
2 = 3.
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13.3. Exercises

Exercise 13.1: Suppose that you have a fair 4-sided die, and let X be the random variable
representing the value of the number rolled.

(a) Write down the moment generating function for X.
(b) Use this moment generating function to compute the first and second moments of X.

Exercise 13.2: Let X be a random variable whose probability density function is given
by

fX(x) =

{
e−2x + 1

2
e−x x > 0

0 otherwise
.

(a) Write down the moment generating function for X.
(b) Use this moment generating function to compute the first and second moments of X.

Exercise 13.3: Suppose that a mathematician determines that the revenue the UConn
Dairy Bar makes in a week is a random variable, X, with moment generating function

mX(t) =
1

(1− 2500t)4

Calculate the standard deviation of the revenue the UConn Dairy bar makes in a week.

Exercise 13.4: LetX and Y be two independent random variables with respective moment
generating functions

mX(t) =
1

1− 5t
, if t <

1

5
, mY (t) =

1

(1− 5t)2 , if t <
1

5
.

Find E (X + Y )2.

Exercise 13.5: Suppose X and Y are independent random variables with parameters
λx, λy, respectively. Find the distribution of X + Y .

Exercise 13.6: True or False? If X ∼ Exp (λx) and Y ∼ Exp (λy) then X + Y ∼
Exp (λx + λy). Explain your answer.
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13.4. Selected solutions

Solution to Exercise 13.1(A):

mX(t) = E
[
etX
]

= e1·t1

4
+ e2·t1

4
+ e3·t1

4
+ e4·t1

4

=
1

4

(
e1·t + e2·t + e3·t + e4·t)

Solution to Exercise 13.1(B): We have

m′X(t) =
1

4

(
e1·t + 2e2·t + 3e3·t + 4e4·t) ,

m′X(t) =
1

4

(
e1·t + 4e2·t + 9e3·t + 16e4·t) ,

so

EX = m′X(0) =
1

4
(1 + 2 + 3 + 4) =

5

2

and

EX2 = m′′X(0) =
1

4
(1 + 4 + 9 + 16) =

15

2
.

Solution to Exercise 13.2(A): for t < 1 we have

mX(t) = E
[
etX
]

=

ˆ ∞
0

etx
(
e−2x +

1

2
e−x
)
dx

=
1

t− 2
etx−2x +

1

2(t− 1)
etx−x

∣∣∣x=∞

x=0
=

= 0− 1

2− t
+ 0− 1

2 (t− 1)
=

=
1

t− 2
+

1

2 (1− t)
=

t

2(2− t)(1− t)

Solution to Exercise 13.2(B): We have

m′X(t) =
1

(2− t)2 +
1

2 (1− t)2

m′′X(t) =
2

(2− t)3 +
1

(1− t)3

so EX = m′X(0) = 3
4
and EX2 = m′′X = 5

4
.
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Solution to Exercise 13.3: We want SD(X) =
√

Var(X). But Var(X) = EX2 − (EX)2.
We compute

m′(t) = 4 (2500) (1− 2500t)−5 ,

m′′(t) = 20 (2500)2 (1− 2500t)−6 ,

EX = m′(0) = 10, 000

EX2 = m′′(0) = 125, 000, 000

Var(X) = 125, 000, 000− 10, 0002 = 25, 000, 000

SD(X) =
√

25, 000, 000 = 5,000.

Solution to Exercise 13.4: First recall that if we let W = X+Y t, and X, Y independent
then

mW (t) = mX+Y (t) = mX(t)mY (t) =
1

(1− 5t)3 ,

recall that E [W 2] = m′′W (0). Thus we need to compute some derivatives

m′W (t) =
15

(1− 5x)4 ,

m′′W (t) =
300

(1− 5x)5 ,

thus
E
[
W 2
]

= m′′W (0) =
300

(1− 0)5 = 300.

Solution to Exercise 13.5: Since X ∼ Pois(λx) and Y ∼ Pois(λy) then

mX(t) = eλx(e
t−1) and mY (t) = eλy(e

t−1).

Then
mX+Y (t) = mX(t)mY (t), by independence

= eλx(e
t−1)eλy(e

t−1)

= e(λx+λy)(et−1).

Thus X + Y ∼ Pois (λx + λy).

Solution to Exercise 13.6: We compute the MGF of X+Y and compare it to the MGF of

a random variable Z ∼ Exp (λx + λy). The MGF of Z ismZ(t) =
λx + λy

λx + λy − t
for t < λx+λy.

By independence mX+Y (t) = mX(t)mY (t) =
λx

λx − t
· λy
λy − t

but
λx + λy

λx + λy − t
6= λx
λx − t

· λy
λy−t

and hence the statement is false.





CHAPTER 14

Limit laws

14.1. Introduction

Suppose Xi are independent and have the same distribution. In the case of continuous or
discrete random variables, this means they all have the same density. We say the Xi are
i.i.d., which stands for “independent and identically distributed.” Let Sn =

∑n
i=1 Xi. Sn is

called the partial sum process.

Theorem 14.1: Suppose E |Xi| <∞ and let µ = EXi. Then

Sn
n
→ µ.

This is known as the strong law of large numbers (SLLN). The convergence here means that
Sn(ω)/n→ µ for every ω ∈ S, where S is the probability space, except possibly for a set of
ω of probability 0.

The proof of Theorem 14.1 is quite hard, and we prove a weaker version, the weak law of
large numbers (WLLN). The WLLN states that for every a > 0,

P
(∣∣∣Sn

n
− EX1

∣∣∣ > a
)
→ 0

as n→∞. It is not even that easy to give an example of random variables that satisfy the
WLLN but not the SLLN.

Before proving the WLLN, we need an inequality called Chebyshev’s inequality.

Proposition 14.2: If Y ≥ 0, then for any A,

P(Y > A) ≤ EY
A

.

Proof. We do the case for continuous densities, the case for discrete densities being similar.
We have

P(Y > A) =

ˆ ∞
A

fY (y) dy ≤
ˆ ∞
A

y

A
fY (y) dy

≤ 1

A

ˆ ∞
−∞

yfY (y) dy =
1

A
EY.

147
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We now prove the WLLN.

Theorem 14.3: Suppose the Xi are i.i.d. and E |X1| and VarX1 are finite. Then for every
a > 0,

P
(∣∣∣Sn

n
− EX1

∣∣∣ > a
)
→ 0

as n→∞.

Proof. Recall ESn = nEX1 and by the independence, VarSn = nVarX1, so Var(Sn/n) =
VarX1/n. We have

P
(∣∣∣Sn

n
− EX1

∣∣∣ > a
)

= P
(∣∣∣Sn

n
− E

(Sn
n

)∣∣∣ > a
)

= P
(∣∣∣Sn

n
− E

(Sn
n

)∣∣∣2 > a2
)

≤
E |Sn

n
− E (Sn

n
)|2

a2

=
Var(Sn

n
)

a2

=
VarX1

n

a2
→ 0.

The inequality step follows from Proposition 14.2 with A = a2 and Y = |Sn

n
− E (Sn

n
)|2.

We now turn to the central limit theorem (CLT).

Theorem 14.4: Suppose the Xi are i.i.d. Suppose EX2
i < ∞. Let µ = EXi and σ2 =

VarXi. Then

P
(
a ≤ Sn − nµ

σ
√
n
≤ b
)
→ P(a ≤ Z ≤ b)

for every a and b, where Z is a N (0, 1).

The ratio on the left is (Sn − ESn)/
√

VarSn. We do not claim that this ratio converges for
any ω (in fact, it doesn’t), but that the probabilities converge.

Example 14.1: If the Xi are i.i.d. Bernoulli random variables, so that Sn is a binomial,
this is just the normal approximation to the binomial.

Example 14.2: Suppose we roll a die 3600 times. Let Xi be the number showing on the
ith roll. We know Sn/n will be close to 3.5. What’s the probability it differs from 3.5 by
more than 0.05?

Answer. We want
P
(∣∣∣Sn

n
− 3.5

∣∣∣ > .05
)
.
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We rewrite this as

P(|Sn − nEX1| > (.05)(3600)) = P
(∣∣∣Sn − nEX1√

n
√

VarX1

∣∣∣ > 180

(60)
√

35
12

)
r ≈ P(|Z| > 1.756) ≈ .08.

Example 14.3: Suppose the lifetime of a human has expectation 72 and variance 36. What
is the probability that the average of the lifetimes of 100 people exceeds 73?

Answer. We want

P
(Sn
n
> 73

)
= P(Sn > 7300)

= P
(Sn − nEX1√

n
√

VarX1

>
7300− (100)(72)√

100
√

36

)
≈ P(Z > 1.667) ≈ .047.

The idea behind proving the central limit theorem is the following. It turns out that if
mYn(t) → mZ(t) for every t, then P(a ≤ Yn ≤ b) → P(a ≤ Z ≤ b). (We won’t prove
this.) We are going to let Yn = (Sn − nµ)/σ

√
n. Let Wi = (Xi − µ)/σ. Then EWi = 0,

VarWi = VarXi

σ2 = 1, the Wi are independent, and

Sn − nµ
σ
√
n

=

∑n
i=1Wi√
n

.

So there is no loss of generality in assuming that µ = 0 and σ = 1. Then

mYn(t) = E etYn = E e(t/
√
n)(Sn) = mSn(t/

√
n).

Since the Xi are i.i.d., all the Xi have the same moment generating function. Since Sn =
X1 + ·+Xn, then

mSn(t) = mX1(t) · · ·mXn(t) = [mX1(t)]
n.

If we expand etX1 as a power series,

mX1(t) = E etX1 = 1 + tEX1 +
t2

2!
E (X1)2 +

t3

3!
E (X1)3 + · · · .

We put the above together and obtain
mYn(t) = mSn(t/

√
n)

= [mX1(t/
√
n)]n

=
[
1 + t · 0 +

(t/
√
n)2

2!
+Rn

]n
=
[
1 +

t2

2n
+Rn]n,

where |Rn|/n→ 0 as n→∞. This converges to et2/2 = mZ(t) as n→∞.
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14.2. Further examples and applications

Example 14.4: If 10 fair dice are rolled, find the approximate probability that the sum
obtained is between 30 and 40, inclusive.

Answer. We will need to use the ±.5 continuity correction because these are discrete random
variables. Let Xi denote the value of the ith die. Recall that

E (Xi) =
7

2
Var(Xi) =

35

12
.

Take
X = X1 + · · ·+Xn

to be their sum. Using the CLT we need

nµ = 10 · 7

2
= 35

σ
√
n =

√
350

12

thus using the continuity correction, then

P (29.5 ≤ X ≤ 40.5) = P

29.5− 35√
350
12

≤ X − 35√
350
12

≤ 40.5− 35√
350
12


≈ P (−1.0184 ≤ Z ≤ 1.0184)

= Φ (1.0184)− Φ (−1.0184)

= 2Φ (1.0184)− 1 = .692.

Example 14.5: Your instructor has 1000 Probability final exams that needs to be graded.
The time required to grade an exam are all i.i.s. with mean of 20 minutes and standard
deviation of 4 minutes. Approximate the probability that your instructor will be able to
grade at least 25 minutes in the first 450 minutes of work.

Answer. Let Xi be the time it takes to grade exam i. Then

X = X1 + · · ·+X25

is the time it takes to grade the first 25 exams. We want P (X ≤ 450). Using the CLT, we
need

nµ = 25 · 20 = 500

σ
√
n = 4

√
25 = 20.

Thus

P (X ≤ 450) = P
(
X − 500

20
≤ 450− 500

20

)
≈ P (Z ≤ −2.5)

= 1− Φ(2.5)

= .006.

© Copyright 2017 Phanuel Mariano, Patricia Alonso-Ruiz.
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14.3. Exercises

Exercise 14.1: In a 162-game season, find the approximate probability that a team with
a 0.5 chance of winning will win at least 87 games.

Exercise 14.2: An individual students MATH 3160 Final exam score at UConn is a ran-
dom variable with mean 75 and variance 25, How many students would have to take the
examination to ensure with probability at least .9 that the class average would be within 5
of 75?

Exercise 14.3: Let X1, X2, . . . , X100 be independent exponential random variables with
parameter λ = 1. Use the central limit theorem to approximate

P

(
100∑
i=1

Xi > 90

)
.

Exercise 14.4: Suppose an insurance company has 10,000 automobile policy holders. The
expected yearly claim per policy holder is $240, with a standard deviation of $800. Approx-
imate the probability that the total yearly claim is greater than $2,500,000.

Exercise 14.5: Suppose that the checkout time at the UConn dairy bar has a mean of 5
minutes and a standard deviation of 2 minutes. Estimate the probability to serve at least
36 customers during a 3-hour and a half shift.

Exercise 14.6: Shabazz Napier is a basketball player in the NBA. His expected number
of points per game is 15 with a standard deviation of 5 points per game. The NBA season
is 82 games long. Shabazz is guaranteed a ten million dollar raise next year if he can score a
total of 1300 points this season. Approximate the probability that Shabazz will get a raise
next season.
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14.4. Selected solutions

Solution to Exercise 14.1: Let Xi be 1 if the team win’s the ith game and 0 if the team
loses. This is a Bernoulli R.V. with p = .5. Thus µ = p = .5 and σ2 = p (1− p) = (.5)2.
Then

X =
162∑
i=1

Xi

is the number of games won in the season. Using CLT

nµ = 162 · .5 = 81

σ
√
n = .5

√
162 = 6.36

then

P

(
162∑
i=1

Xi ≥ 87

)
= P (X ≥ 86.5)

= P
(
X − 81

6.36
>

86.5− 81

6.36

)
≈ P (Z > .86) = .1949

where we used a correction since X is a discrete r.v.

Solution to Exercise 14.2: Now µ = 75, σ2 = 25, σ = 5.

P
(

70 <

∑n
i=1Xi

n
< 80

)
≥ .9 ⇐⇒ P

(
70 · n <

n∑
i=1

Xi < 80 · n

)
≥ .9

⇐⇒ P
(

70 · n− 75 · n
5
√
n

< Z <
80 · n− 75 · n

5
√
n

)
≥ .9

⇐⇒ P
(
−5

√
n

5
< Z < 5

√
n

5

)
≥ .9

⇐⇒ P
(
−
√
n < Z <

√
n
)
≥ .9

⇐⇒ Φ
(√

n
)
− Φ

(
−
√
n
)
≥ .9

⇐⇒ Φ
(√

n
)
−
(
1− Φ

(√
n
))
≥ .9

⇐⇒ 2Φ
(√

n
)
− 1 ≥ .9

⇐⇒ Φ
(√

n
)
≥ .95

Using the table inversely we have that
√
n ≥ 1.65 =⇒ n ≥ 2.722

hence the first integer that insurers that n ≥ 2.722 is

n = 3.

Solution to Exercise 14.3: Since λ = 1 then EXi = 1 and Var(Xi) = 1. Use CLT

nµ = 100 · 1 = 100

σ
√
n = 1 ·

√
100 = 10.
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P

(
100∑
i=1

Xi > 90

)
= P

(∑100
i=1 Xi − 100 · 1

1 ·
√

100
>

90− 100 · 1
1 ·
√

100

)
≈ P (Z > −1) = .8413.

Solution to Exercise 14.4:

P (X ≥ 1300) = P
(
X − 2400000

80000
≥ 2500000− 2400000

80000

)
≈ P (Z ≥ 1.25)

= 1− Φ(1.25) = 1− .8944

= .1056.

Solution to Exercise 14.5: Let Xi be the time it takes to check out customer i. Then
X = X1 + · · ·+X36

is the time it takes to check out 36 customer. We want P (X ≤ 210). Use CLT,
nµ = 36 · 5 = 180

σ
√
n = 2

√
36 = 12.

Thus

P (X ≤ 210) = P
(
X − 180

12
≤ 210− 180

12

)
≈ P (Z ≤ 2.5)

= Φ(2.5)

= .9938.

Solution to Exercise 14.6:

Let Xi be the number of points scored by Shabazz in game i . Then
X = X1 + · · ·+X82

is the total number of points in a whole season. We want P (X ≥ 1800). Use CLT,
nµ = 82 · 15 = 1230

σ
√
n = 5

√
82 = 45.28.

Thus

P (X ≥ 1300) = P
(
X − 1230

45.28
≥ 1300− 1230

45.28

)
≈ P (Z ≥ 1.55)

= 1− Φ(1.55) = 1− .9394

= .0606.
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CHAPTER 15

Application of Probability in Finance

15.1. Introduction

15.1.1. The simple coin toss game. Suppose, as in Example 3.5, that we toss a fair
coin repeatedly and independently. If it comes up heads, we win a dollar, and if it comes up
tails, we lose a dollar. Unlike in Chapter 3 , we now can describe the solution using sums of
independent random variables. We will use the partial sums process (Chapter 14)

Sn =
n∑
i=1

Xi

where X1, X2, X3, ... are independent random variables with P(Xi = 1) = P(Xi = −1) = 1
2
.

Then Sn represents the total change in the number of dollars that we have after n coin tosses:
if we started with $M , we will have M + Sn dollars after n tosses. The name “process” is
used because the amount changes over time, and “partial sums” is used because we compute
Sn before we know what is the final outcome of the game. The process Sn is also commonly
called “the simple random walk”.

The Central Limit Theorem tells us that Sn is approximately distributed as a normal random
variable with mean 0 and variance n, that is

Mn = M + Sn ∼ M +
√
nZ ∼ N (M,n)

and these random variables have the distribution function computed as F (x) = Φ

(
x−M√

n

)
.

157
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15.1.2. The coin toss game stopped at zero. Suppose the game is modified so that
it is stopped when the amount of money reaches zero. Can we compute the probability
distribution function of Mn, the amount of money after n coin tosses?

A useful trick, called the "Reflection Principle", tells us that the probability to have x dollars
after n coin tosses is

P(M + Sn = x)− P(M + Sn = −x) if x > 0

To obtain this formula, we again denote by Mn the amount of money we have after n coin
tosses. Then
P(Mn = x) = P(M + Sn = x,M + Sk > 0 for all k = 1, 2, ..., n)

= P(M + Sn = x)− P(M + Sn = x,M + Sk = 0 for some k = 1, 2, ..., n)

= P(M + Sn = x)− P(M + Sn = −x,M + Sk = 0 for some k = 1, 2, ..., n)

= P(M + Sn = x)− P(M + Sn = −x).

This, together with the Central Limit Theorem, implies that the cumulative probability
distribution function of Mn can be approximated by

F (x) =

Φ

(
x−M√

n

)
+ Φ

(
−x−M√

n

)
if x > 0

0 otherwise

The following graph shows the approximate shape of this function.
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Note that this function is discontinuous as the jump at zero represents the probability thatwe
have lost all the money by the time n:

P(Mn = 0) ≈ 2Φ

(
−M√

n

)
If we consider the limit n→∞, then P(Mn = 0)→ 2Φ (0) = 1.

This proves that, in this game, all the money will be eventually lost with probability one.
In fact, this conclusion is similar to the conclusion in Example 3.6.
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15.1.3. The coin toss game with borrowing at zero. Suppose now that the game is
modified so that each time when we hit zero, instead of stopping, we borrow $1 and continue
playing. Another form of the "Reflection Principle" implies that the probability to have x
dollars is

P(Mn = x) = P(M + Sn = x) + P(M + Sn = −x) if x > 0

This formula is easy to explain because in this game the amount of money can be expressed
as Mn = |M + Sn|. The Central Limit Theorem tells us that the cumulative probability
distribution function of Mn can be approximated by

F (x) =

Φ

(
x−M√

n

)
− Φ

(
−x−M√

n

)
if x > 0

0 otherwise

The following graph shows the approximate shape of this function.
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15.1.4. Probability to win $N before reaching as low as $L. Continuing the
simple coin toss game, suppose L, M and N are integer numbers such that L < M < N . If
we start with $M , what is the probability that we will get up to $N before we go as low as
$L? As in Chapter 3, we are interested in computing the function

y(x) = P(win $N before reaching $L | given M = x)

which satisfies N − L+ 1 linear equations

y(x) =



0 if x = L

...
1
2
(y(x+ 1) + y(x− 1)) if L < x < N

...

1 if x = N

In general, in more complicated games, such a function is called a “harmonic function”
because its value at a given x is the average of the neighboring values. In our game we can
compute that y(x) is a linear function with slope 1

N−L which gives us the formula

y(x) =
x− L
N − L

and the final answer: with probability

(15.1.1) P(win $N before reaching $L | given M = x) = y(M) =
M − L

N − L

we win $N before going as low as $L if we begin with $M . Formula (15.1.1) applies in general
to the Gambler’s Ruin problems, a particular case of which we consider in this subsection.

The following graph shows y(x) = x−L
N−L , the probability to win $N = $60 before reaching as

low as $L = $10, in a game when Mn+1 = Mn ± $1 with probability 1/2 at each step.
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15.1.5. Expected playing time. Suppose we play the same simple coin toss game as
in the previous subsection, and we would like to compute the expected number of coin tosses
needed to complete the game. If we denote this expected number by T (x), we will have a
system of N − L+ 1 linear equations

ET (x) =



0 if x = L

...

1 + 1
2

(
ET (x+ 1) + ET (x− 1)

)
if L < x < N

...

0 if x = N

These equations have a unique solution given by the formula
ET (x) = (x− L)(N − x)

and the final answer: the expected number of coin tosses is

(15.1.2) E T (M) = (M − L)(N − M)

The following graph shows ET (x) = (x− L)(N − x), the expected number of coin tosses
to win $N = $60 before reaching as low as $L = $10, in a game when Mn+1 = 2Mn or
Mn+1 = 1

2
Mn with probability 1/2 at each step.
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15.1.6. Doubling the money coin toss game. Let us now consider a game in which
we begin with $M dollars, toss a fair coin repeatedly and independently. If it comes up
heads, we double our money, and if it comes up tails, we lose half of our money. If we
start with $M , what is the probability that we will get up to $N before we go as low as $L?

To answer this question, we first should notice that our money Mn after n coin tosses
is given as a partial product process Mn = M · Y1 · Y2 · ... · Yn where Y1, Y2, Y3, ... are
independent random variables with where P(Yi = 2) = P(Yi = 1

2
) = 1

2
. If again write

y(x) = P(win $N before reaching $L) then

y(x) =



0 if x = L

...
1
2
(y(2x) + y(1

2
x)) if L < x < N

...

1 if x = N

This function will be linear if we change to the logarithmic variable log(x), which gives us
the answer:

P(win $N before reaching $L | given M = x) ≈ log(M/L)

log(N/L)
This answer is approximate because, according to the rules, we can only have capital amounts
represented by numbers M2k, where k is an integer, and L,M,N maybe only approximately
equal to such numbers. The exact answer is

(15.1.3) P(win $N before reaching $L | given M = x) =
`

` + w

where ` is the number of straight losses needed to reach $L from $M and w is the number
of straight wins needed to reach $N from $M . Formula (15.1.3) is again the general formula
for the Gambler’s Ruin problems, the same as in formula (15.1.1).

The following graph shows the probability to win $N = $256 before reaching as low as
$L = $1 in a game when Mn+1 = 2Mn or Mn+1 = 1

2
Mn with probability 1/2 at each step.
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15.2. Exercises on simple coin toss games

Exercise 15.1: In Subsection 15.1.1, what is the approximate distribution of Mn −Mk?

Exercise 15.2: In Subsection 15.1.1, compute Cov(Mk,Mn).

Hint: assume n > k and write Mn = Mk +Mn −Mk = Mk + (Sn − Sk).

Exercise 15.3: Consider the game in whichMn = MeσSn . Describe the rules of this game.

Exercise 15.4: In the game in Exercise 15.3, find EMn, EM2
n, Var(Mn).

Exercise 15.5: In the game in Exercise 15.3, how Mn and Mk are related?

Hint: assume n > k and write Mn+1 = Mn
Mn+1

Mn

. Also consider Mn = Mk
Mn

Mk

.

Exercise 15.6: Following Exercise 15.4, find Cov(Mn,Mk).

Exercise 15.7: In the game in Exercise 15.3, find the probability to win $N before reaching
as low as $L.

Exercise 15.8: In the game in Exercise 15.7, find the expected playing time.

Exercise 15.9: Following Exercise 15.3, use the Normal Approximation (the Central Limit
Theorem) to find the approximate distribution of Mn. Then use this distribution to find the
approximate values of EMn, EM2

n, Var(Mn).

Exercise 15.10: Following Exercise 15.6, use the Normal Approximation (the Central
Limit Theorem) to find the approximate value of Cov(Mn,Mk).

Exercise 15.11: Comparing Exercises 15.4 and 15.9, which quantities are larger and which
are smaller? In which case the Normal Approximation gets better, and in which case it
gets worse? If n → ∞, how does σ need to behave in order to have an accurate Normal
Approximation?
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15.3. Problems motivated by the American options pricing

Problem 15.1: Consider the following game: a fair dice is thrown once and the player can
either stop the game and receive the amount of money equals the outcome of the dice, or the
player can decide to throw the dice the second time, and then receive the amount of money
equals the outcome of the dice on this second throw. Compute the maximal expected value
of the payoff and the corresponding optimal strategy.

Problem 15.2: Compute the maximal expected value of the payoff and the corresponding
optimal strategy in the following game. A fair dice is thrown 3 times.

• After each throw except for the 3rd one, the player can either stop the game or
continue.
• If the player decides to stop, then he/she receives the amount of money, which equals
the current outcome of the dice (between 1 and 6).
• If the game is continued up to and including the 3rd throw, the player receives the
amount of money, which equals to the outcome of the dice on the 3rd throw.

Problem 15.3:

(1) Compute the maximal expected value of the payoff and the corresponding optimal
strategy in the same game as in Problem 15.2, but when up to 4, or 5, or 6 throws
are allowed.

(2) Compute the maximal expected value of the payoff and the corresponding optimal
strategy in the same game as in Problem 15.2, when an unlimited number of throws
are allowed.

Problem 15.4: Let us consider a game where at each round, if you bet $x, you get $2x,
if you win and $0, if you lose. Let us also suppose that at each round, the probability of
winning equals to the probability of losing and is equal to 1/2. Additionally, let us assume
that the outcomes of every round are independent.

In such settings, let us consider the following doubling strategy. Starting from a bet of $1 in
the first round, you stop if you win or you bet twice as much if you lose. In such settings,
if you win for the first (and only) time in the nth round, your cumulative winning is $2n.
Show that

E [cumulative winning] =∞.

This is called the St. Petersburg paradox. The paradox is in an observation that one wouldn’t
pay an infinite amount to play such a game.

Notice that if the game is stopped at the nth round, you spent in the previous rounds the
dollar amount

20 + · · ·+ 2n−2 =
(
20 + · · ·+ 2n−2

) 1− 1
2

1− 1
2

= 2n−1 − 1.

© Copyright 2017 Oleksii Mostovyi.
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Therefore, the dollar difference between the total amount won and the total amount spent
is

2n−1 − (2n−1 − 1) = 1,

and does not depend on n. This seems to specify a riskless strategy of winning $1. However,
if one introduces a credit constraint, i.e., if a player can only spent $M , for some fixed positive
number M , then even if M is large, the expected winning becomes finite, and one cannot
safely win $1 anymore.

Problem 15.5: In the context of Problem 15.4, let G denotes the cumulative winning.
Instead of computing the expectation of G, Daniel Bernoulli has proposed to compute the
expectation of the logarithm of G. Show that

E [log2(G)] = log2(g) <∞

and compute g.

Problem 15.6: Let us suppose that a random variable X, which corresponds to the dollar
amount of winning in some lottery, has the following distribution

P[X = n] =
1

Cn2
, n ∈ N,

where C =
∞∑
n=1

1
n2 , which in particular is finite. Clearly, X is finite-valued (with probability

one). Show that nevertheless E[X] =∞.

As a historical remark, note that here C = ζ(2), where ζ(s) =
∞∑
k=1

1
ns is the Riemann zeta

function (or Euler-Riemann zeta function) of a complex variables s. It was first proven by
Euler in 1735 that ζ(2) = π2

6
.

Problem 15.7: Let us suppose that a one-year interest rate is determined at the beginning
of each month. In this case r0, r1, . . . , rN−1 are such interest rates, where only r0 is non-
random. Thus $1 of investment at time zero is worth (1 + r0) at the end of the year 1,
(1 + r0)(1 + r1) at the end of year 2, (1 + r0) . . . (1 + rk−1) at the end of year k, and so forth.
Let us suppose that r0 = .1 and (ri)i=1,...,N−1 are independent random variables with the
following Bernoulli distribution (under so-called risk-neutral measure): ri = .15 or .05 with
probability 1/2 each.

Compute the price at time 0 of the security that pays $1 at time N . Note that such a security
is called zero-coupon bond.

Hint: let DN denotes the discount factor, i.e.,

DN =
1

(1 + r0) . . . (1 + rN−1)
.

You need to evaluate
Ẽ [DN ] .
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Problem 15.8: In the settings of Problem 15.7, let simply compounded yield for the zero-
coupon bond with maturity N is the number y, such that

Ẽ [DN ] =
1

(1 + y)m
.

Calculate y.

Problem 15.9: In the settings of Problem 15.7, let continuously compounded yield for the
zero-coupon bond with maturity N is the number y, such that

Ẽ [DN ] = e−yN .

Calculate y.
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15.4. Problems about the Black-Scholes-Merton pricing formula

The following problems are related to the Black-Scholes-Merton pricing formula. Let us
suppose that X is a standard normal random variable and

(15.4.1) S(T ) = S(0) exp
(

(r − 1
2
σ2)T + σ

√
TX

)
,

is the price of the stock at time T , where r is the interest rate, σ is the volatility, and S(0)
is the initial value. Here T , r, σ, and S(0) are constants.

Problem 15.10: Show that
(15.4.2) E

[
e−rT (S(T )−K)+

]
= S(0)Φ(d1)−Ke−rTΦ(d2),

where K is a positive constant,

d1 =
1

σ
√
T

(
log

(
S(0)

K

)
+

(
r +

σ2

2

)
T

)
, d2 =

1

σ
√
T

(
log

(
S(0)

K

)
+

(
r − σ2

2

)
T

)
,

and Φ is the cumulative distribution function of a standard normal random variable, i.e.,

Φ(y) =
1√
2π

ˆ y

−∞
e−

1
2
z2dz, y ∈ R.

Note that (15.4.2) the Black-Scholes-Merton formula, which gives the price of a European
call option in at time 0 with strike K and maturity T .

Problem 15.11: In the framework of the Black-Scholes-Merton model, i.e., with the stock
price process given by (15.4.1) with r = 0, let us consider

(15.4.3) E
[
S(t)1/3

]
.

Find t̂ ∈ [0, 1] and evaluate E
[
S(t̂)1/3

]
such that

E
[
S(t̂)1/3

]
= max

t∈[0,1]
E
[
S(t)1/3

]
.

Note that max
t∈[0,1]

E
[
S(t)1/3

]
is closely related to the payoff of the American cube root option

with maturity 1 and t̂ to the optimal policy.

Problem 15.12: In the framework of the Black-Scholes-Merton model, i.e., with the stock
price process given by (15.4.1), let us consider

(15.4.4) max
t∈[0,1]

E
[
e−rt (S(t)−K)+] .

Find t̂ ∈ [0, 1], such that

E
[
e−rt̂

(
S(t̂)−K

)+
]

= max
t∈[0,1]

E
[
e−rt (S(t)−K)+] .

Similarly to Problem 15.11, max
t∈[0,1]

E
[
e−rt (S(t)−K)+] is closely related to the payoff of the

American call option with maturity 1 and t̂ to the optimal policy.

© Copyright 2017 Oleksii Mostovyi.
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15.5. Selected solutions

Answer to Exercise 15.4: The Normal Approximations imply

EMn = M

(
eσ + e−σ

2

)n
,

EM2
n = M2

(
e2σ + e−2σ

2

)n
,

Var(Mn) = M2

((
e2σ + e−2σ

2

)n
−
(
eσ + e−σ

2

)2n
)
.

Answer to Exercise 15.9:

EMn ≈Menσ
2/2,

EM2
n ≈M2e2nσ2 ,

Var(Mn) ≈M2
(
e2nσ2 − enσ2

)
.

Answer to Exercise 15.11:

EMn = M

(
eσ + e−σ

2

)n
< Menσ

2/2,

EM2
n = M2

(
e2σ + e−2σ

2

)n
< M2e2nσ2 ,

Var(Mn) = M2

((
e2σ + e−2σ

2

)n
−
(
eσ + e−σ

2

)2n
)
< M2

(
e2nσ2 − enσ2

)
.

The Normal Approximations get better if σ is small, but get worse if n is large. The standard
optimal regime is n→∞ and nσ2 → 1, which means σ ∼ 1√

n
.

Sketch of the solution to Problem 15.1: The strategy is to select a value x and say
that the player stops if this value is exceeded after the first throw, and goes to the second
through if this value is not exceeded. We know that the average value of one through is
(6+1)/2 without any strategies. The probability to exceed x is (6−x)/6, and the conditional
expectation of the payoff is 7+x

2
if x is exceeded. So the expected payoff is 7+x

2
· 6−x

6
+ 7

2
· x

6
.

This gives the optimal strategies for x = 3 and the maximal expected payoff is EP2 = 4.25.

Sketch of the solution to Problem 15.2: The expected payoff is 7+x
2
· 6−x

6
+ 17

4
· x

6
.

Here 17
4

= 4.25 replaces 7
2

= 3.5 because after the first throw the player can decide either to
stop, or play the game with two throws, which was solved and the maximal expected payoff
was 4.25. So in the case of three throws, we have one optimal strategy with cut off x1 = 4
after the first throw, and cut off x2 = 3 after the second throw, following Problem 15.1. The
expected payoff of the game which allows up to three throws is

EP3 =
7 + 4

2
· 6− 4

6
+

17

4
· 4

6
=

14

3
≈ 4.6666
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Answer to Problem 15.3:

(1) EP4 =
89

18
≈ 4.9444 EP5 =

277

54
≈ 5.1296 EP6 =

1709

324
≈ 5.2747

(2) EP∞ = 6.

Sketch of the solution to Problem 15.4: By direct computation, E [cumulative winning]
is given by the following divergent series

∞∑
k=1

2k
1

2k
=∞.

Sketch of the solution to Problem 15.5:

E [log2(G)] =
∞∑
k=1

log2(2k)
1

2k
=
∞∑
k=1

k

2k
= 2 = log2(4) <∞.

In particular, g = 4.

Sketch of the solution to Problem 15.6: E[X] = 1
C

∞∑
n=1

1
n

=∞, as the harmonic series

is divergent.

Sketch of the solution to Problem 15.7: Using independence of rk’s, we get

Ẽ [DN ] =
1

1 + r0

N−1∏
k=1

Ẽ
[

1

1 + rk

]
=

1

1 + r0

(
Ẽ
[

1

1 + r1

])N−1

= 0.909× .0.911N−1.

Sketch of the solution to Problem 15.8: Direct computations give y =
(

1
Ẽ[DN ]

) 1
N −1.

Sketch of the solution to Problem 15.9: Similarly to Problem 15.8, we get y =

− log(Ẽ[DN ])
N

.

Sketch of the solution to Problem 15.10: From formula (15.4.1), we get

E
[
e−rT (S(T )−K)+

]
=

ˆ
R
e−rT max

(
S(0)e(r−1

2
σ2)T+σ

√
Tx −K, 0

)
e−x

2/2

√
2π

dx.

Now, integration of the right-hand side yields the result.

Sketch of the solution to Problem 15.11: Let us fix t ∈ [0, 1]. From Jensen’s inequality,
we get E

[
S(t)1/3

]
≤ (E [S(t)])1/3. The inequality is strict for t > 0, by strict concavity of

x→ x1/3. The equality is reached at t = 0. Therefore t̂ = 0, and E
[
S(t̂)1/3

]
= S(0)1/3.

Note that in the settings of this problem t̂ is actually the optimal policy of the American
cube root option and E

[
S(t̂)1/3

]
is the corresponding price. However, in general one needs

to consider max
τ∈[0,1]

E
[
S(τ)1/3

]
, where τ are so-called stopping times, i.e., random times which

an additional structural property.
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Sketch of the solution to Problem 15.12: for every t ∈ [0, 1], we have

e−rt (S(t)−K)+ =
(
S(t)e−rt −Ke−rt

)+ ≤
(
S(t)e−rt −Ke−r

)+

and E [S(t)e−rt] = S(0). Now, using convexity of x → (x − K)+ and applying Jensen’s
inequality for conditional expectation, we deduce that

E
[(
S(t)e−rt −Ke−r

)+
]
< E

[(
S(1)e−r −Ke−r

)+
]

for every t ∈ [0, 1). We conclude that

t̂ = 1 and E
[
e−rt̂

(
S(t̂)−K

)+
]

= E
[
e−r (S(1)−K)+] .
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Appendix: a table of common distributions and a table of the standard normal
cumulative distribution function

The following tables contain information from https://www.wikipedia.org/

https://www.wikipedia.org/
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z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55966 0.56360 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998
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