
CHAPTER 15

Application of Probability in Finance

15.1. Coin toss games

15.1.1. The simple coin toss game. Suppose, as in Example 4.8, that we toss a fair
coin repeatedly and independently. If it comes up heads, we win a dollar, and if it comes
up tails, we lose a dollar. Unlike in Chapter 3 , we now can describe the solution using
sums of independent random variables. We will use the partial sums process introduced in
De�nition 14.1 in Chapter 14

Sn =
n∑
i=1

Xi,

where X1, X2, X3, ... are i.i.d. random variables with the distribution P(Xi = 1) = P(Xi =
−1) = 1

2
. Then Sn represents the total change in the number of dollars that we have after n

coin tosses: if we started with $M , we will have M + Sn dollars after n tosses. The name
process is used because the amount changes over time, and partial sums is used because we
compute Sn before we know what is the �nal outcome of the game. The process Sn is also
commonly called the simple random walk.

The Central Limit Theorem tells us that Sn is approximately distributed as a normal random
variable with mean 0 and variance n, that is,

Mn = M + Sn ∼M +
√
nZ ∼ N (M,n)

and these random variables have the distribution function F (x) = Φ
(
x−M√

n

)
.
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194 15. APPLICATION OF PROBABILITY IN FINANCE

15.1.2. The coin toss game stopped at zero. Suppose the game is modi�ed so that
it is stopped when the amount of money reaches zero. Can we compute the probability
distribution function of Mn, the amount of money after n coin tosses?

A useful trick, called the Re�ection Principle, tells us that the probability to have x dollars
after n coin tosses is

P(M + Sn = x)− P(M + Sn = −x) if x > 0

To derive this formula, we again denote by Mn the amount of money we have after n coin
tosses. Then

P(Mn = x) = P(M + Sn = x,M + Sk > 0 for all k = 1, 2, ..., n)

= P(M + Sn = x)− P(M + Sn = x,M + Sk = 0 for some k = 1, 2, ..., n)

= P(M + Sn = x)− P(M + Sn = −x,M + Sk = 0 for some k = 1, 2, ..., n)

= P(M + Sn = x)− P(M + Sn = −x).

This, together with the Central Limit Theorem, implies that the cumulative probability
distribution function of Mn can be approximated by

F (x) =

{
Φ
(
x−M√

n

)
+ Φ

(
−x−M√

n

)
if x > 0

0 otherwise.

The following graph shows the approximate shape of this function.
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Note that this function is discontinuous as the jump at zero represents the probability that
we have lost all the money by the time n, that is,

P(Mn = 0) ≈ 2Φ

(
−M√

n

)
If we consider the limit n→∞, then P(Mn = 0) −−−→

n→∞
2Φ (0) = 1.

This proves that in this game all the money will be eventually lost with probability one. In
fact, this conclusion is similar to the conclusion in Example 4.9.
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15.1.3. The coin toss game with borrowing at zero. Suppose now that the game is
modi�ed so that each time when we hit zero, instead of stopping, we borrow $1 and continue
playing. Another form of the Re�ection Principle implies that the probability to have x
dollars is

P(Mn = x) = P(M + Sn = x) + P(M + Sn = −x) if x > 0.

This formula is easy to explain because in this game the amount of money can be expressed
as Mn = |M + Sn|. The Central Limit Theorem tells us that the cumulative probability
distribution function of Mn can be approximated by

F (x) =

{
Φ
(
x−M√

n

)
− Φ

(
−x−M√

n

)
if x > 0

0 otherwise

The following graph shows the approximate shape of this function.
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15.1.4. Probability to win $N before reaching as low as $L. Continuing the
simple coin toss game, suppose L, M and N are integer numbers such that L < M < N . If
we start with $M , what is the probability that we will get up to $N before we go as low as
$L? As in Chapter 3, we are interested in �nding the function

y(x) = P ( winning $N before reaching $L |M = x)

which satis�es N − L+ 1 linear equations

y(x) =



0 if x = L

...
1
2
(y(x+ 1) + y(x− 1)) if L < x < N

...

1 if x = N

In general, in more complicated games, such a function is called a harmonic function because
its value at a given x is the average of the neighboring values. In our game we can compute
that y(x) is a linear function with slope 1

N−L which gives us the formula

y(x) =
x− L
N − L
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and the �nal answer: with probability

(15.1.1) P ( winning $N before reaching $L |M = x) = y(M) =
M− L

N− L

we win $N before going as low as $L if we begin with $M . Formula (15.1.1) applies in
general to Gambler's Ruin problems, a particular case of which we consider in this section.

The following graph shows y(x) = x−L
N−L , the probability to win $N = $60 before reaching as

low as $L = $10, in a game when Mn+1 = Mn ± $1 with probability 1/2 at each step.
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15.1.5. Expected playing time. Suppose we play the same simple coin toss game as
in the previous section, and we would like to compute the expected number of coin tosses
needed to complete the game. If we denote this expected number by T (x), we will have a
system of N − L+ 1 linear equations

ET (x) =



0 if x = L

...

1 + 1
2

(ET (x+ 1) + ET (x− 1)) if L < x < N

...

0 if x = N

These equations have a unique solution given by the formula

ET (x) = (x− L)(N − x)

and the �nal answer: the expected number of coin tosses is

(15.1.2) ET(M) = (M− L)(N−M).

The following graph shows ET (x) = (x − L)(N − x), the expected number of coin tosses
to win $N = $60 before reaching as low as $L = $10, in a game when Mn+1 = 2Mn or
Mn+1 = 1

2
Mn with probability 1/2 at each step.
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15.1.6. Doubling the money coin toss game. Let us now consider a game in which
we begin with $M dollars, toss a fair coin repeatedly and independently. If it comes up
heads, we double our money, and if it comes up tails, we lose half of our money. If we start
with $M , what is the probability that we will get up to $N before we go as low as $L?

To answer this question, we �rst should notice that our money Mn after n coin tosses is
given as a partial product process Mn = M · Y1 · Y2 · ... · Yn, where Y1, Y2, Y3, ... are i.i.d.
random variables with the distribution P(Yi = 2) = P(Yi = 1

2
) = 1

2
. If again we write

y(x) = P ( winning $N before reaching $L), then

y(x) =



0 if x = L

...
1
2
(y(2x) + y(1

2
x)) if L < x < N

...

1 if x = N

This function is linear if we change to the logarithmic variable log(x), which gives us the
answer:

P ( winning $N before reaching $L) ≈ log(M/L)

log(N/L)

This answer is approximate because, according to the rules, we can only have capital amounts
represented by numbersM2k, where k is an integer, and L,M,N maybe only approximately
equal to such numbers. The exact answer is

(15.1.3) P ( winning $N before reaching $L |M = x) =
l

l + w
,

where l is the number of straight losses needed to reach $L from $M and w is the number of
straight wins needed to reach $N from $M . Equation (15.1.3) is again the general formula
for Gambler's Ruin problems, the same as in Equation (15.1.1).

The following graph shows the probability to win $N = $256 before reaching as low as
$L = $1 in a game when Mn+1 = 2Mn or Mn+1 = 1

2
Mn with probability 1/2 at each step.
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15.2. Exercises on simple coin toss games

Exercise 15.1. In Subsection 15.1.1, what is the approximate distribution of Mn −Mk?

Exercise 15.2. In Subsection 15.1.1, compute Cov (Mk,Mn).

Hint: assume n > k and write Mn = Mk +Mn −Mk = Mk + (Sn − Sk).

Exercise 15.3. Consider the game in whichMn = MeσSn . Describe the rules of this game.

Exercise 15.4. In the game in Exercise 15.3, �nd EMn, EM2
n, Var (Mn).

Exercise 15.5. In the game in Exercise 15.3, how Mn and Mk are related?

Hint: assume n > k and write Mn+1 = Mn
Mn+1

Mn

. Also consider Mn = Mk
Mn

Mk

.

Exercise 15.6. Following Exercise 15.4, �nd Cov (Mn,Mk).

Exercise 15.7. In the game in Exercise 15.3, �nd the probability to win $N before reaching
as low as $L.

Exercise 15.8. In the game in Exercise 15.7, �nd the expected playing time.

Exercise 15.9. Following Exercise 15.3, use the Normal Approximation (the Central Limit
Theorem) to �nd the approximate distribution of Mn. Then use this distribution to �nd the
approximate values of EMn, EM2

n, Var (Mn).

Exercise 15.10. Following Exercise 15.6, use the Normal Approximation (the Central
Limit Theorem) to �nd the approximate value of Cov (Mn,Mk).

Exercise 15.11. Comparing Exercises 15.4 and 15.9, which quantities are larger and which
are smaller? In which case the Normal Approximation gets better, and in which case it
gets worse? If n → ∞, how does σ need to behave in order to have an accurate Normal
Approximation?
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15.3. Problems motivated by the American options pricing

Problem 15.1. Consider the following game: a fair dice is thrown once and the player can
either stop the game and receive the amount of money equals the outcome of the dice, or the
player can decide to throw the dice the second time, and then receive the amount of money
equals the outcome of the dice on this second throw. Compute the maximal expected value
of the payo� and the corresponding optimal strategy.

Problem 15.2. Compute the maximal expected value of the payo� and the corresponding
optimal strategy in the following game. A fair dice is thrown 3 times.

• After each throw except for the 3rd one, the player can either stop the game or
continue.
• If the player decides to stop, then he/she receives the amount of money, which equals
the current outcome of the dice (between 1 and 6).
• If the game is continued up to and including the 3rd throw, the player receives the
amount of money, which equals to the outcome of the dice on the 3rd throw.

Problem 15.3.

(1) Compute the maximal expected value of the payo� and the corresponding optimal
strategy in the same game as in Problem 15.2, but when up to 4, or 5, or 6 throws
are allowed.

(2) Compute the maximal expected value of the payo� and the corresponding optimal
strategy in the same game as in Problem 15.2, when an unlimited number of throws
are allowed.

Problem 15.4. Let us consider a game where at each round, if you bet $x, you get $2x,
if you win and $0, if you lose. Let us also suppose that at each round, the probability of
winning equals to the probability of losing and is equal to 1/2. Additionally, let us assume
that the outcomes of every round are independent.

In such settings, let us consider the following doubling strategy. Starting from a bet of $1 in
the �rst round, you stop if you win or you bet twice as much if you lose. In such settings,
if you win for the �rst (and only) time in the nth round, your cumulative winning is $2n.
Show that

E [cumulative winning] =∞.

This is called the St. Petersburg paradox. The paradox is in an observation that one wouldn't
pay an in�nite amount to play such a game.

Notice that if the game is stopped at the nth round, you spent in the previous rounds the
dollar amount

20 + · · ·+ 2n−2 =
(
20 + · · ·+ 2n−2

) 1− 1
2

1− 1
2

= 2n−1 − 1.

© Copyright 2017 Oleksii Mostovyi.
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Therefore, the dollar di�erence between the total amount won and the total amount spent
is

2n−1 − (2n−1 − 1) = 1,

and does not depend on n. This seems to specify a riskless strategy of winning $1. However,
if one introduces a credit constraint, i.e., if a player can only spent $M , for some �xed positive
number M , then even if M is large, the expected winning becomes �nite, and one cannot
safely win $1 anymore.

Problem 15.5. In the context of Problem 15.4, let G denotes the cumulative winning.
Instead of computing the expectation of G, Daniel Bernoulli has proposed to compute the
expectation of the logarithm of G. Show that

E [log2(G)] = log2(g) <∞

and compute g.

Problem 15.6. Let us suppose that a random variable X, which corresponds to the dollar
amount of winning in some lottery, has the following distribution

P[X = n] =
1

Cn2
, n ∈ N,

where C =
∞∑
n=1

1
n2 , which in particular is �nite. Clearly, X is �nite-valued (with probability

one). Show that nevertheless E[X] =∞.

As a historical remark, note that here C = ζ(2), where ζ(s) =
∞∑
k=1

1
ns

is the Riemann zeta

function (or Euler-Riemann zeta function) of a complex variables s. It was �rst proven by

Euler in 1735 that ζ(2) = π2

6
.

Problem 15.7. Let us suppose that a one-year interest rate is determined at the beginning
of each month. In this case r0, r1, . . . , rN−1 are such interest rates, where only r0 is non-
random. Thus $1 of investment at time zero is worth (1 + r0) at the end of the year 1,
(1 + r0)(1 + r1) at the end of year 2, (1 + r0) . . . (1 + rk−1) at the end of year k, and so forth.
Let us suppose that r0 = 0.1 and (ri)i=1,...,N−1 are independent random variables with the
following Bernoulli distribution (under so-called risk-neutral measure): ri = 0.15 or .05 with
probability 1/2 each.

Compute the price at time 0 of the security that pays $1 at time N . Note that such a security
is called zero-coupon bond.

Hint: let DN denotes the discount factor, i.e.,

DN =
1

(1 + r0) . . . (1 + rN−1)
.

You need to evaluate

Ẽ [DN ] .
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Problem 15.8. In the settings of Problem 15.7, let simply compounded yield for the zero-
coupon bond with maturity N is the number y, such that

Ẽ [DN ] =
1

(1 + y)m
.

Calculate y.

Problem 15.9. In the settings of Problem 15.7, let continuously compounded yield for the
zero-coupon bond with maturity N is the number y, such that

Ẽ [DN ] = e−yN .

Calculate y.
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15.4. Problems about the Black-Scholes-Merton pricing formula

The following problems are related to the Black-Scholes-Merton pricing formula. Let us
suppose that X is a standard normal random variable and

(15.4.1) S(T ) = S(0) exp
(

(r − 1
2
σ2)T + σ

√
TX

)
,

is the price of the stock at time T , where r is the interest rate, σ is the volatility, and S(0)
is the initial value. Here T , r, σ, and S(0) are constants.

Problem 15.10. Show that

(15.4.2) E
[
e−rT (S(T )−K)+

]
= S(0)Φ(d1)−Ke−rTΦ(d2),

where K is a positive constant,

d1 =
1

σ
√
T

(
log

(
S(0)

K

)
+

(
r +

σ2

2

)
T

)
, d2 =

1

σ
√
T

(
log

(
S(0)

K

)
+

(
r − σ2

2

)
T

)
,

and Φ is the cumulative distribution function of a standard normal random variable, i.e.,

Φ(y) =
1√
2π

� y

−∞
e−

1
2
z2dz, y ∈ R.

Note that (15.4.2) the Black-Scholes-Merton formula, which gives the price of a European
call option in at time 0 with strike K and maturity T .

Problem 15.11. In the framework of the Black-Scholes-Merton model, i.e., with the stock
price process given by (15.4.1) with r = 0, let us consider

(15.4.3) E
[
S(t)1/3

]
.

Find t̂ ∈ [0, 1] and evaluate E
[
S(t̂)1/3

]
such that

E
[
S(t̂)1/3

]
= max

t∈[0,1]
E
[
S(t)1/3

]
.

Note that max
t∈[0,1]

E
[
S(t)1/3

]
is closely related to the payo� of the American cube root option

with maturity 1 and t̂ to the optimal policy.

Problem 15.12. In the framework of the Black-Scholes-Merton model, i.e., with the stock
price process given by (15.4.1), let us consider

(15.4.4) max
t∈[0,1]

E
[
e−rt (S(t)−K)+] .

Find t̂ ∈ [0, 1], such that

E
[
e−rt̂

(
S(t̂)−K

)+
]

= max
t∈[0,1]

E
[
e−rt (S(t)−K)+] .

Similarly to Problem 15.11, max
t∈[0,1]

E
[
e−rt (S(t)−K)+] is closely related to the payo� of the

American call option with maturity 1 and t̂ to the optimal policy.

© Copyright 2017 Oleksii Mostovyi.
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15.5. Selected solutions

Answer to Exercise 15.4: The Normal Approximations imply

EMn = M

(
eσ + e−σ

2

)n
,

EM2
n = M2

(
e2σ + e−2σ

2

)n
,

Var (Mn) = M2

((
e2σ + e−2σ

2

)n
−
(
eσ + e−σ

2

)2n
)
.

Answer to Exercise 15.9:

EMn ≈Menσ
2/2,

EM2
n ≈M2e2nσ2

,

Var (Mn) ≈M2
(
e2nσ2 − enσ2

)
.

Answer to Exercise 15.11:

EMn = M

(
eσ + e−σ

2

)n
< Menσ

2/2,

EM2
n = M2

(
e2σ + e−2σ

2

)n
< M2e2nσ2

,

Var (Mn) = M2

((
e2σ + e−2σ

2

)n
−
(
eσ + e−σ

2

)2n
)
< M2

(
e2nσ2 − enσ2

)
.

The Normal Approximations get better if σ is small, but get worse if n is large. The standard
optimal regime is n→∞ and nσ2 → 1, which means σ ∼ 1√

n
.

Sketch of the solution to Problem 15.1: The strategy is to select a value x and say
that the player stops if this value is exceeded after the �rst throw, and goes to the second
through if this value is not exceeded. We know that the average value of one through is
(6+1)/2 without any strategies. The probability to exceed x is (6−x)/6, and the conditional
expectation of the payo� is 7+x

2
if x is exceeded. So the expected payo� is 7+x

2
· 6−x

6
+ 7

2
· x

6
.

This gives the optimal strategies for x = 3 and the maximal expected payo� is EP2 = 4.25.

Sketch of the solution to Problem 15.2: The expected payo� is 7+x
2
· 6−x

6
+ 17

4
· x

6
.

Here 17
4

= 4.25 replaces 7
2

= 3.5 because after the �rst throw the player can decide either to
stop, or play the game with two throws, which was solved and the maximal expected payo�
was 4.25. So in the case of three throws, we have one optimal strategy with cut o� x1 = 4
after the �rst throw, and cut o� x2 = 3 after the second throw, following Problem 15.1. The
expected payo� of the game which allows up to three throws is

EP3 =
7 + 4

2
· 6− 4

6
+

17

4
· 4

6
=

14

3
≈ 4.6666
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Answer to Problem 15.3:

(1) EP4 =
89

18
≈ 4.9444 EP5 =

277

54
≈ 5.1296 EP6 =

1709

324
≈ 5.2747

(2) EP∞ = 6.

Sketch of the solution to Problem 15.4: By direct computation, E [cumulative winning]
is given by the following divergent series

∞∑
k=1

2k
1

2k
=∞.

Sketch of the solution to Problem 15.5:

E [log2(G)] =
∞∑
k=1

log2(2k)
1

2k
=
∞∑
k=1

k

2k
= 2 = log2(4) <∞.

In particular, g = 4.

Sketch of the solution to Problem 15.6: E[X] = 1
C

∞∑
n=1

1
n

=∞, as the harmonic series

is divergent.

Sketch of the solution to Problem 15.7: Using independence of rk's, we get

Ẽ [DN ] =
1

1 + r0

N−1∏
k=1

Ẽ
[

1

1 + rk

]
=

1

1 + r0

(
Ẽ
[

1

1 + r1

])N−1

= 0.909× .0.911N−1.

Sketch of the solution to Problem 15.8: Direct computations give y =
(

1
Ẽ[DN ]

) 1
N −1.

Sketch of the solution to Problem 15.9: Similarly to Problem 15.8, we get y =

− log(Ẽ[DN ])
N

.

Sketch of the solution to Problem 15.10: From formula (15.4.1), we get

E
[
e−rT (S(T )−K)+

]
=

�
R
e−rT max

(
S(0)e(r−1

2
σ2)T+σ

√
Tx −K, 0

)
e−x

2/2

√
2π

dx.

Now, integration of the right-hand side yields the result.

Sketch of the solution to Problem 15.11: Let us �x t ∈ [0, 1]. From Jensen's inequality,

we get E
[
S(t)1/3

]
≤ (E [S(t)])1/3. The inequality is strict for t > 0, by strict concavity of

x→ x1/3. The equality is reached at t = 0. Therefore t̂ = 0, and E
[
S(t̂)1/3

]
= S(0)1/3.

Note that in the settings of this problem t̂ is actually the optimal policy of the American
cube root option and E

[
S(t̂)1/3

]
is the corresponding price. However, in general one needs

to consider max
τ∈[0,1]

E
[
S(τ)1/3

]
, where τ are so-called stopping times, i.e., random times which

an additional structural property.
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Sketch of the solution to Problem 15.12: for every t ∈ [0, 1], we have

e−rt (S(t)−K)+ =
(
S(t)e−rt −Ke−rt

)+ ≤
(
S(t)e−rt −Ke−r

)+

and E [S(t)e−rt] = S(0). Now, using convexity of x → (x − K)+ and applying Jensen's
inequality for conditional expectation, we deduce that

E
[(
S(t)e−rt −Ke−r

)+
]
< E

[(
S(1)e−r −Ke−r

)+
]

for every t ∈ [0, 1). We conclude that

t̂ = 1 and E
[
e−rt̂

(
S(t̂)−K

)+
]

= E
[
e−r (S(1)−K)+] .
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